МарсРефераты >> Астрономия >> Марс
Когда станции «Марс - 2» и «Марс - 3» вышли на орбиту вокруг Марса, на нем бушевала пылевая буря. Два месяца вся планета была закрыта плотными облаками пыли, поднятой с поверхности. Пылевая буря значительно осложнила фотографирование планеты и некоторые научные измерения. Однако изображения диска Марса, полученные с помощью фотоаппаратуры, существенно дополнили информацию о Марсе. Впервые сфотографирован Марс в фазах, не наблюдаемых с Земли. Переданные с борта станции изображения дополнили информацию о поверхности, структуре атмосферы и фигуры планеты. Проведенные измерения показали, что высота этих облаков составляет около 10 км. над средним уровнем поверхности. Над более высокими областями слой облаков был тоньше, над низкими – толще. Пылевые бури на Марсе – мощное и пока еще загадочное явление. Обычно прозрачная атмосфера Марса вдруг в течение нескольких дней становится почти столь же непрозрачной для видимого излучения, как облачная атмосфера Венеры. Но прозрачность улучшается, как показали измерения, по мере увеличения длины волны. Это указывает на значительную долю очень мелких пылевых частиц (размером около одного микрона) в облаках. Такие частицы должны оседать очень медленно, что согласуется с общей продолжительностью пылевой бури. Однако снимки «Маринер - 9» показывали быстрое увеличение прозрачности в конце декабря. Оно было неполным, но а десять суток видимость существенно улучшилась. Чтобы это объяснить, надо предположить в облаках некоторую долю быстро оседающих частиц сравнительно большого размера. В общем в марсианских облаках в период бури, видимо, содержались частицы разных размеров, причем соотношение их менялось во времени. Многие данные указывают так или иначе на увеличение прозрачности с длиной волны. Такие облака должны охлаждать поверхность и увеличивать температуру атмосферы, что в действительности и наблюдалось. Создавался своего рода «антипарниковый эффект», противоположный ситуации на Венере, где атмосфера разогревается благодаря ее непрозрачности для инфракрасных лучей.
В чем же состоит причина, порождающая столь сильные ветры? Атмосфера Марса, как уже говорилось, очень разряжена и прозрачна. Днем Солнце сильно нагревает поверхность планеты, а ночью Марс быстро остывает. Эти резкие перепады температур приводят к большому перепаду давлений, что и вызывает столь сильные ветры, что по сравнению с ними земные бури можно считать легким бризом. Это одна сторона ответа на вопрос.
Другая причина, вероятно, состоит в том, что во время великих противостояний Марса планета находится перигелии своей орбиты, поэтому Солнце сильнее нагревает марсианскую поверхность, а стало быть, перепад температур намного больше, чем в другие периоды противостояний.
Наблюдаемые облака в атмосфере Марса разделяются на желтые, синие и белые. Желтые облака появляются в нижних слоях атмосферы на высоте примерно 5 км. и ниже. Они состоят, вероятно, из мелкой пыли, например из частиц гидрата железа.
Синие облака (фиолетовая дымка) наблюдается на больших высотах, вблизи линии терминатора, на утреннем и вечернем краях диска. Учитывая химический состав атмосферы и наиболее вероятный ход изменения температуры и давления с высотой, можно предположить, что эти облака образуют кристаллики льда.
Белые облака, по-видимому, имеют ту же природу, что и синие, но состоят из более крупных кристалликов льда. Эти облака нередко располагаются над светлыми районами, вблизи их границ с темными районами.
В циркуляции атмосферы преобладают ламинарные течения. Весной направление движения облаков преимущественно западное, а летом – восточное. Весной образование облаков связано с таянием полярных шапок, летом – с процессами в темных областях. Часто наблюдаются утренние и вечерние туманы небольшой плотности.
Измерения инфракрасными спектрометрами в диапазоне отраженного (1,9 – 6 мкм.) и собственного (4 – 14,7 мкм.) излучения планеты позволили получить некоторые сведения о составе нижней атмосферы Марса. В частности, зарегистрированы полосы поглощения твердой углекислоты и льда. Учитывая данные температурных измерений, можно предположить, что в экваториальных областях кристаллы льда в виде тумана находятся в атмосфере, а углекислота – на поверхности в полярных областях. Инфракрасный радиометр «Маринера - 7» зарегистрировал у южной полярной шапки минимальную температуру –160° С, а среднюю – 118° С, что примерно соответствует температуре замерзания углекислоты при том атмосферном давлении, которое существует у поверхности Марса. Методом радиопросвечивания удалось установить давление атмосферы у поверхности в различных областях. Так, при заходе «Маринера - 6» за диск планеты радиопросвечивание показало, что атмосферное давление у поверхности, в области меридиана Синус, составляет 6,5 мбар.
Напомним в этой связи, что давление в земной атмосфере на уровне моря принимается равным 1013 мбар. Учитывая, что было зарегистрировано минимальное давление у поверхности 3,5 мбар. и максимальное 9 мбар., и принимая во внимание характер рельефа поверхности, можно с достаточным основанием полагать, что среднему уровню поверхности соответствует давление 6 мбар.
Инфракрасные фотометры станций «Марс – 2» и «Марс – 3» показали, что на среднем уровне давление на Марсе составляет 5,5 – 6 мбар. (около 4 – 4,5 миллиметров ртутного столба), что примерно в 200 раз меньше, чем на Земле.
Содержание водяного пара не превышало пяти микрон осажденной воды – в тысячи раз меньше, чем в земной атмосфере. Если бы всю воду, содержащуюся в атмосфере Марса, равномерно распределить по поверхности его, то образовался бы слой чуть тоньше человеческого волоса. Вблизи поверхности атмосфера состоит в основном из углекислого газа. На высоте около 100 км. под действием солнечного ультрафиолетового излучения углекислые газ распадается на молекулу угарного газа и атом кислорода. Такой же процесс распада водяного пара приводит к появлению атомов водорода. Поэтому на высотах 300 – 400 км. атмосфера в основном атомарно-водородной. Следы кислорода наблюдаются вплоть до высоты 700-800 км.
Температура верхней атмосферы в области высот от 100 до 200 км. возрастает, а выше остается постоянной. Примерно такая же картина наблюдается и в верхних атмосферах Земли и Венеры. Как это ни странно, верхняя атмосфера Марса больше похожа на верхнюю атмосферу Венеры, нежели на земную.
Марсианские сутки.
Наблюдая за диском Марса в телескоп в течение достаточно продолжительного времени, например, на протяжении всей ночи, можно заметить, как детали его поверхности одна за другой появляются из-за диска, постепенно движутся к противоположному краю, а затем скрываются. Ясно, что это происходит вследствие вращения Марса, которое подобно суточному вращению земного шара и приводит к смене дня и ночи. Из наблюдений было определено, что период вращения Марса составляет 24 часа, 37 минут 23 секунды, что на 37 минут 22,7 секунды больше периода вращения Земли. Последнее означает, что за одни земные сутки Марс «недоворачивается» до полного оборота на 9 градусов, и земной наблюдатель увидит данную деталь планеты в том же расположении на диске только через 40 земных суток (9° * 40=360°). Поскольку период вращения Марса близок к земному, то получается, что каждую ночь с Земли можно обозревать одно и то же полушарие Марса, которое лишь медленно и постепенно сменяется другим. Чтобы в течение суток полностью осмотреть поверхность Марса, надо наблюдение производить в обсерваториях, расположенных на разной географической долготе. Так, например, если в Ташкенте полдень, а в обсерватории Маунт Вилсон (США) царит глубокая ночь, то наблюдая с этих обсерваторий Марс, можно за сутки осмотреть всю его поверхность. Смена дня и ночи сопровождается явлениями, аналогичными земным. В средних широтах Солнце восходит и заходит, двигаясь под углом к горизонту. Поэтому переход от одного времени суток к другому сопровождается сумерками, когда поверхность освещается косыми лучами низкостоящего Солнца. В тропиках и на экваторе Солнце поднимается и опускается почти отвесно. Здесь так же, как и на одноименных широтах Земли, день и ночь сменяют друг друга резким переходом от света к темноте.