Нейроинформатика и ее приложенияРефераты >> Программирование и компьютеры >> Нейроинформатика и ее приложения
Предлагаемый способ ранней диагностики меланом хориоидеи включает применение нового лабораторного метода, разработанного в Красноярском межобластном офтальмологическом центре им. Макарова, и интерпретацию получаемых данных нейросетевым классификатором.
Лабораторный метод основан на косвенном измерении содержания пигмента (меланина) в ресницах. Полученные данные спектрофотометрии, проведенной на нескольких частотах для каждого глаза, а также некоторые общие характеристики обследуемого (пол, возраст и др.), подаются на входные синапсы 43-нейронного классификатора. Нейросеть решает, имеется ли у пациента опухоль, и если да, то определяет стадию развития заболевания, выдавая при этом процентную вероятность своей уверенности. Даже при подозрении на наличие опухоли больной может быть направлен на дальнейшее углубленное обследование. Таким образом, данная технология может использоваться для скрининговых профилактических обследований населения.
Стартовое обучение нейросетевого классификатора было проведено на параметрах 195 обследованных людей с ранними и поздними стадиями опухолей, а также не имеющих опухоли. Нейроклассификатор обладает способностью дальнейшего накопления опыта по мере использования.
Пример 3. Новая классификация иммунодефицитов
Если хорошей предсказывающей или диагностической системы построить не удается, возникает предположение о «скрытых параметрах», неучтенных и неизмеренных свойствах. Наблюдаемые параметры зависят от них, поэтому и не удается построить хорошей зависимости.
Одна из простейших форм предположения о скрытых параметрах гипотеза о качественной неоднородности выборки. Она означает, что скрытые параметры принимают сравнительно небольшое конечное число значений и всю выборку можно разбить на классы, внутри которых существенные скрытые параметры постоянны.
Достаточно большая нейронная сеть может освоить любую непротиворечивую обучающую выборку, однако, как показывает практика, если достаточно малая нейронная сеть не может обучиться, то из этого можно извлечь полезную информацию. Если не удается построить удовлетворительную регрессионную зависимость при заданном (небольшом) числе нейронов и фиксированной характеристике («крутизне» функции активации) каждого нейрона, то из обучающей выборки исключаются наиболее сложные примеры до тех пор, пока сеть не обучится. Так получается класс, который предположительно соответствует одному значению скрытых параметров. Далее обучение можно продолжить на отброшенных примерах и т.д.
В одном из исследований нейросеть обучали диагностике вторичного иммунодефицита (недостаточности иммунной системы) по иммунологическим и метаболическим параметрам лимфоцитов. В обычных условиях по сдвигам этих параметров иногда бывает трудно сделать верное заключение (и это хорошо известная в иммунологии проблема). Были обследованы здоровые и больные люди, параметры которых использовались для обучения. Однако малая нейросеть не обучалась, причем хорошо распознавала все до единого примеры здоровых людей, а часть примеров больных путала со здоровыми. Тогда был сделан следующий шаг: каждый раз, когда сеть останавливала работу, из обучающей выборки убирался пример, на данный момент самый трудный для распознавания, и после этого вновь запускался процесс обучения.
Постепенно из обучающей выборки были исключена примерно треть больных (при этом ни одного здорового!), и только тогда сеть обучилась полностью. Так как ни один здоровый человек не был исключен из обучения, группа здоровых не изменилась, а группа больных оказалась разделена на 2 подгруппы оставшиеся и исключенные примеры больных.
После проведения статистического анализа выяснилось, что группа здоровых и исходная группа больных практически не отличаются друг от друга по показателям метаболизма лимфоцитов. Однако две подгруппы больных статистически достоверно отличаются от здоровых людей и друг от друга по нескольким показателям внутриклеточного метаболизма лимфоцитов. Причем в одной подгруппе наблюдалось увеличение активности большинства лимфоцитарных ферментов по сравнению со здоровыми, а в другой подгруппе депрессия (снижение активности). Для этих подгрупп и прогноз течения болезни, и лечение различны.
Истинные преимущества нейронных сетей?
Нейронные сети нынче в моде, но стоит ли следовать за ней? Ресурсы ограничены особенно у нас и особенно теперь. Так что же такое Нейрокомпьютер интеллектуальная игрушка или новая техническая революция? Что нового и полезного может сделать нейрокомпьютер? Очевидно, что на новые игрушки, даже высокоинтеллектуальные, средств нет; нейрокомпьютер должен еще доказать свои необыкновенные возможности совершить то, что не под силу обычной ЭВМ, иначе на него не стоит тратиться.
У энтузиастов имеются свои рекламные способы отвечать на заданные вопросы, рисуя радужные горизонты. Но все это в будущем. А сейчас? Ответы парадоксальны:
· нейрокомпьютеры это новая техническая революция, которая приходит к нам в виде интеллектуальной игрушки (вспомните, и ПК были придуманы для игры);
· для любой задачи, которую способен решить нейрокомпьютер, можно построить специализированную ЭВМ, которая решит ее не хуже, а подчас даже лучше.
Зачем же тогда нейрокомпьютеры? Вступая в творческую игру, мы не можем знать, чем она кончится, иначе это не Игра. Поэзия и реклама дают нам фантом, призрак результата, погоня за которым важнейшая часть игры. Столь же призрачными могут оказаться и прозаические ответы игра может далеко от них увести. Но и они необходимы иллюзия практичности столь же важна, сколь и иллюзия величия. Вот несколько вариантов прозаических ответов на вопрос «зачем?».
А. Нейрокомпьютеры дают стандартный способ решения многих нестандартных задач. И неважно, что специализированная машина лучше решит один класс задач. Важнее, что один нейрокомпьютер решит и эту задачу, и другую, и третью и не надо каждый раз проектировать специализированную ЭВМ, нейрокомпьютер сделает все сам и почти не хуже.
Б. Вместо программирования обучение. Нейрокомпьютер учится нужно только формировать учебные задачники. Труд программиста замещается новым трудом учителя (может быть, лучше сказать тренера или дрессировщика). Лучше это или хуже? Ни то, ни другое. Программист предписывает машине все детали работы, учитель создает «образовательную среду», к которой приспосабливается нейрокомпьютер. Появляются новые возможности для работы.
В. Нейрокомпьютеры особенно эффективны там, где нужен аналог человеческой интуиции для распознавания образов (узнавания лиц, чтения рукописных текстов), подготовки аналитических прогнозов, перевода с одного естественного языка на другой и т.п. Именно для таких задач обычно трудно сочинить явный алгоритм.
Г. Нейронные сети позволяют создать эффективное программное обеспечение для компьютеров с высокой степенью распараллеливания обработки. Проблема эффективного использования параллельных системы хорошо известна многим. Как добиться того, чтобы все элементы одновременно и без лишнего дублирования делали что-то полезное? Создавая математическое обеспечения на базе нейронных сетей, можно для широкого класса задач решить эту проблему.