Нейроинформатика и ее приложенияРефераты >> Программирование и компьютеры >> Нейроинформатика и ее приложения
Для полносвязной сети входной сумматор нейрона фактически распадается на два: первый вычисляет линейную функцию от входных сигналов сети, второй линейную функцию от выходных сигналов других нейронов, полученных на предыдущем шаге.
Функция активации нейронов (характеристическая функция) это нелинейный преобразователь выходного сигнала сумматора. Если функция одна для всех нейронов сети, то сеть называют однородной (гомогенной). Если же характеристическая функция зависит еще от одного или нескольких параметров, значения которых меняются от нейрона к нейрону, то сеть называют неоднородной (гетерогенной).
Составлять сеть из нейронов стандартного вида не обязательно. Слоистая или полносвязная архитектуры не налагают существенных ограничений на участвующие в них элементы. Единственное жесткое требование, предъявляемое архитектурой к элементам сети, это соответствие размерности вектора входных сигналов элемента (она определяется архитектурой) числу его входов. Если полносвязная сеть функционирует до получения ответа заданное число тактов k, то ее можно представить как частный случай k-слойной сети, все слои которой одинаковы и каждый из них соответствует такту функционирования полносвязной сети.
Существенное различие между полносвязной и слоистой сетями становится очевидным, когда число тактов функционирования заранее не ограничено слоистая сеть так работать не может.
Доказаны теоремы о полноте: для любой непрерывной функции нескольких переменных можно построить нейронную сеть, которая вычисляет эту функцию с любой заданной точностью. Так что нейронные сети в каком-то смысле могут все.
Задачи для нейронных сетей
Многие задачи, для решения которых используются нейронные сети, могут рассматриваться как частные случаи следующих основных проблем:
· построение функции по конечному набору значений;
· оптимизация;
· построение отношений на множестве объектов;
· распределенный поиск информации и ассоциативная память;
· фильтрация;
· сжатие информации;
· идентификация динамических систем и управление ими;
· нейросетевая реализация классических задач и алгоритмов вычислительной математики: решение систем линейных уравнений, решение задач математической физики сеточными методами и др.
Однозначно построить функцию (обычно многих действительных переменных) по конечному набору значений невозможно без специальных дополнительных условий. В качестве таких условий в классических подходах используются требования минимизации некоторых регуляризирующих функционалов, например, интеграла суммы квадратов вторых производных требование максимальной гладкости. При этом известные в конечном множестве точек значения функции превращаются в набор ограничений, при которых находится минимум функционала.
С помощью нейронных сетей строится, естественно, нейросетевая реализация функции: создается нейронная сеть, которая, получая на входе вектор аргументов, выдает на выходе значение функции. Обычно предполагается, что любая типичная нейросетевая реализация подойдет для решения задачи. При необходимости вместо требования максимальной гладкости минимизируют число слоев, количество нейронов и/или число связей, а также вводят условие «максимально пологой» функции активации нейронов.
Построить функцию по конечному набору значений обычно требуется при решении одной из самых актуальных для пользователей и аналитиков задач: заполнение пропусков в таблицах. Пусть, как обычно, каждая строка таблицы данных соответствует какому-либо объекту, а в строках указаны значения признаков (свойства) соответствующих объектов. В подавляющем большинстве случаев данные неполны: по крайней мере, для части объектов неизвестны значения некоторых признаков. Необходимо как-то восстановить пропущенные значения. Достоверная статистическая оценка должна давать для отсутствующих данных их условное математическое ожидание (условия известные значения других признаков) и характеристику разброса доверительный интервал. Это, однако, требует либо непомерно большого объема известных данных, либо очень сильных предположений о виде функций распределения. Приходится вместо статистически достоверных уравнений регрессии использовать правдоподобные нейросетевые реализации.
Термин «правдоподобные» взят нами из книги Дж. Пойя «Математика и правдоподобные рассуждения». Любая, даже самая строгая математическая конструкция сначала создается всего лишь как правдоподобная гипотеза. Правдоподобными мы называем те выводы, которые еще не прошли испытания на достоверность и строгость, однако именно так совершаются открытия. Кроме того, напомним, что утверждения о статистической достоверности базируются на весьма ограничительных гипотезах о статистической природе эмпирического материала (согласно этой природе данные представляют собой результаты независимых статистических испытаний выбора из фиксированной генеральной совокупности).
Задача классификации также может рассматриваться как задача заполнения пропусков в таблицах: для каждого класса в таблице есть поле, в котором указывается, принадлежит объект данному классу или нет. В эти поля могут помещаться численные значения, например, 1, если объект принадлежит классу, и 0 (или -1) в противном случае.
При обучении классификации с учителем для части объектов, составляющих обучающую выборку, известно, каким классам они принадлежат. Требуется построить нейронную сеть, которая по признакам объекта (записанным в других полях таблицы) определяла бы, к какому классу он принадлежит, т. е. заполняла бы соответствующие поля.
Построение отношений на множестве объектов одна из загадочных и открытых для творчества самых перспективных областей применения искусственного интеллекта. Первый и самый распространенный пример этой задачи классификация без учителя. Допустим, задан набор объектов, причем каждому объекту сопоставлен вектор значений признаков (строка таблицы). Требуется разбить эти объекты на классы эквивалентности. Зачем нужно строить отношения эквивалентности между объектами? В первую очередь для фиксации знаний. Мы накапливаем знания о классах объектов это практика многих тысячелетий, зафиксированная в языке: знание относится к имени класса (пример стандартной древней формы: «люди смертны», «люди» имя класса). В результате классификации появляются новые имена и правила их присвоения. Для каждого нового объекта мы должны сделать две вещи:
1. найти класс, к которому он принадлежит;
2. использовать новую информацию, полученную об этом объекте, для исправления (коррекции) правил классификации.
Какую форму могут иметь правила отнесения к классу? Традиционно класс представляют его «типичные», «средние», и т.п. элементы. Такой типичный объект является идеальной конструкцией, олицетворяющей класс. Объект относят к какому-либо классу в результате сравнения с типичными элементами разных классов и выбора ближайшего. Правила, использующие типичные объекты, очень популярны и служат основой для нейросетевой классификации без учителя.