Автоматизация неразрушающего контроля на сложных технологических объектах
Рефераты >> Программирование и компьютеры >> Автоматизация неразрушающего контроля на сложных технологических объектах

Таблица 2

Относительная выявляемость дефектов сварки различными методами дефектоскопии в % от общего числа дефектов

Метод контроля

Поверхностные трещины

Неметаллические включения

Раковины

Непровары

по скосам

в корне шва

Просвечивание рентгеновское Просвечивание гамма-лучами Ультразвуковой Магнитопорошковый Капиллярный (цветной)

2 0 10 98 100 100 85 45 0 0 100 90 85 0 0 65 28 95 0 0 65 30 45 0 0

Однако, несмотря на значительные успехи в развитии методов НК и применяемые меры по контролю ТС различных систем, отдельные дефекты остаются не выявленными и становятся причинами и результатами аварийных ситуаций и больших катастроф. Так, методы и средства НК, применяемые на стадиях производства и предэксплуатационного контроля на АЭС, далеки от совершенства и в результате их применения не выявляется значительное число дефектов технологической природы [1].

1.2 Эффективность комплексного применения методов НК

Объективный анализ применения различных методов привел к целесообразности применения комплексных систем контроля, которые используют разные по физической природе методы исследования, что, в свою очередь, позволит исключить недостатки одного метода, взаимодополнить методы и реализовать тем самым принцип "избыточности" для повышения надежности контроля систем и агрегатов.

Различные методы НК характеризуется разными значениями технико-экономических параметров: чувствительностью, условиями применения, типами контролируемых объектов и т.д. Поэтому при формировании комплекса методов НК разной физической природы возникает проблема оптимизации состава комплекса с учетом критериев их эффективности и затрат ресурсов.

Комплексное использование наиболее чувствительных методов не означает, что показатели достоверности будут соответственно наибольшими, а в свою очередь, учет первоочередности технических показателей может привести к противоречиям с экономическими критериями, такими как трудозатраты, стоимость, время контроля и т.д., что, в свою очередь, может привести к тому, что выбранный комплекс методов НК может оказаться с экономической точки зрения неэффективным.

Для реализации различных методов НК разработаны различные приборы: дефектоскопы, толщиномеры, тепловизоры для разных дефектов (трещин, негерметичностей), электронное оборудование (для нахождения ослабления электрических контактов), механическое оборудование, которое имеет различные технико-экономические характеристики и технологии использования для различных типов дефектов и др.

Из анализа имеющихся характеристик вытекает необходимость решения задачи выбора состава (комплекса) методов НК как задачи в оптимизационной постановке.

Комплексное применение методов НК для диагностики и обнаружения дефектов в агрегатах и системах направлено на обеспечение увеличения эффективности и достоверности контроля, продления работоспособности и ресурса.

Задача формирования комплекса различных методов НК для обнаружения совокупности возможных (наиболее опасных дефектов) в системе может быть сформулирована как оптимизационная многоуровневая однокритериальная (многокритериальная) задача дискретного программирования [7].

Решение задачи - оптимальное сочетание различных методов НК, применение которых наиболее эффективно при эксплуатации и анализе ресурса дорогостоящих систем.

Актуальными при проведении НК являются также задачи оптимального распределения объемов контроля на всех этапах жизненного цикла объекта, оптимизации мест и параметров контроля, планирования технического обслуживания системы с учетом экономических показателей.

1.3 Индустриализация применения методов НК.

Совершенствование опыта в области системного анализа, развитие научно-методической базы и накопление статистической информации позволили подойти к формулировке и обоснованию концепции "абсолютной надежности" ответственных систем, которая базируется на результатах использования вероятностных методов анализа безопасности и прочности, анализа критичности и оптимального резервирования, совершенствования и широкого применения методов НК, автоматизированных систем НК, количественного учета влияния НК на прочность и долговечность систем, компьютерном анализе и оценке результатов расчетов и измерений.

Большие объемы проведения работ по выявлению дефектов в системах и катастрофические последствия, которые могут быть причиной некачественного его проведения, ставят задачу по индустриализации применения методов НК с использованием математических моделей, методов и современных информационных технологий для организации мониторинга при эксплуатации систем.

Индустриализация применения методов НК и организации работ на ответственных объектах и системах требуют больших материальных и временных затрат, сравнимых со всеми остальными расходами на эксплуатацию объекта.

При проведении мониторинга, исследования систем (элементов) и применения методов НК с целью продления ресурса важными являются данные, получаемые в результате решения задач:

- прогнозирования вероятности безотказной работы (ВБР) элементов и систем. Прогнозирование может осуществляется раздельно по постепенным и внезапным отказам, с использованием моделей полиномиальной регрессии, моделей анализа цензурированных выборок;

- составление (или использование готовой) обобщенной структурной схемы надежности системы и ее узлов и элементов. Обобщенная структурная схема надежности может содержать помимо основных и резервных элементов, элементы из состава ЗИПа. Структурная схема надежности представляет собой такую совокупность функционально подобных основных и резервных элементов, отказ которых вызывает неустранимый отказ всей системы;

- формирование критериев предельного состояния для системы. Предельным состоянием элемента является его неустранимый отказ. Отказ элемента неустраним, если, например, исчерпан резерв и ЗИП. Неустранимый отказ элемента, который вызывает отказ системы, означает переход системы в ее предельное состояние;

- прогнозирование остаточного ресурса узлов и системы в целом. Показатели остаточного ресурса определяются по эмпирической зависимости ВБР узла (по отношению к неустранимым отказам) от наработки. Остаточный ресурс системы может прогнозироваться двумя способами: по результирующей зависимости ВБР системы от наработки, рассчитываемой на основе аналогичных функций узлов, либо по остаточному ресурсу наиболее "слабого" в смысле долговечности узла. В качестве количественных оценок показателей остаточного ресурса используются средний и гамма-процентный остаточные ресурсы.


Страница: