Логические системы в различных функциональных наборах и их реализацияРефераты >> Программирование и компьютеры >> Логические системы в различных функциональных наборах и их реализация
3.1. Матрица отношений.
Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.
Матрица отношений. Табл. 3
3.2. Исследование ФАЛ на толерантность.
Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3, имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.
h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }
h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }
h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }
Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;
k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности
Результаты исследования занесем в таблицу 3.
3.3. Исследование ФАЛ на эквивалентность.
Определим классы эквивалентности для этого множества А = {Х0, Х1, , Х15 } разобьем на классы эквивалентности, получим 6 классов
М1 = {AC} = {X0,X3,X5,X6 X7,X13,X14}
М2 = {AB} = {X1,X12}
М3 = {B} = {X2,X8,X11}
М4 = { } = {X4,X15}
М5 = {ABC} = {X9}
М6 = {BC} = {X10}
При этом каждый класс полностью определяется любым его представителем. Сопоставив результаты исследования с результатами пункта 3.2 получим следующие зависимости
М1 Ì K1 |
М2 Ì K1 |
М3 Ì K2 |
М5 Ì K1 |
М6 Ì K2 |
М1 Ì K3 |
М2 Ì K2 |
М5 Ì K2 |
М6 Ì K3 | |
М5 Ì K3 |
или
K1 = M1 È M2 È M5
K2 = M2 È M3 È M5 È M6
K3 = M1 È M5 È M6
Результаты исследования занесены в таблицу 3. Результаты исследования на эквивалентность и толерантность необходимы для оптимизации построения логической схемы.
3.4. Матрица эквивалентности и толерантности.
Матрицу эквивалентности и толерантности можно представить в виде квадрата, по диагонали которого строятся классы эквивалентности, а затем устраиваются отношения толерантности. Матрица эквивалентности и толерантности представлена в таблице 4.