Логические системы в различных функциональных наборах и их реализация
Рефераты >> Программирование и компьютеры >> Логические системы в различных функциональных наборах и их реализация

И 1,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35

В 1,2,3,4,6,10,11,15,16,17,18,19,21,25,26,30,31,32,33,34

A 2,3,4,6,10,11,15,16,17,18,19,20,21,25,26,30,31,35

H 1,5,6,10,11,15,16,17,18,19,20,21,25,26,30,31,35

пробел

М 1,5,6,7,9,10,11,13,15,16,20,21,25,26,30,31,35

И 1,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35

Х 1,5,7,9,12,14,18,22,24,27,29,31,35

A 2,3,4,6,10,11,15,16,17,18,19,20,21,25,26,30,31,35

Й 1,3,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35

Л 3,4,5,7,10,11,15,16,20,21,25,26,30,31,35

O 2,3,4,6,10,11,15,16,20,21,25,26,30,32,33,34

В 1,2,3,4,6,10,11,15,16,17,18,19,21,25,26,30,31,32,33,34

И 1,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35

Ч 1,5,6,10,11,15,16,17,18,19,20,25,30,35

. 35

2.2. Получение ФАЛ

В данном курсовом проекте из множества признаков выделено 3 (см. табл.1). С номерами 1,3,5для которых и будет построена логическая схема устройства, диагностирующего их наличие или отсутствие.

Для решения задачи в двухзначной логике необходимо перейти к двоичному коду, закодировав им каждый из 16-ти символов строки А.

При этом достаточно четырехразрядного двоичного числа, определяющего значение XYZP, которым в дальнейшем будет кодироваться номер каждого символа. Например, второй символ «В» должен иметь код 0001, первый «И» - 0000 и т.д.

Таблица истинности для выбранных признаков представлена в таблице 2, где ФАЛ - функция алгебры логики, в которых значение 1 принимается для кодов, имеющих значение признака h, равного 1. В общем случае h Ì {0,1}. Следует учесть, что h1àF1, h3àF3, h5àF5.

Отображение T:H ´ A à F

Табл. 1

2.3. Нахождение номеров ФАЛ по карте Карно

Следующим этапом является нахождение 10-значных номеров ФАЛ по карте Карно, общий вид которой для 4-ех переменных представлен на рисунке 2.2. Цифры в квадратах являются степенью числа 2 при определении номера ФАЛ, выбранных в данной работе на рисунке 2.2а,б,в

Рис. 2.2 Карта Карно со степенями двойки

2.4. Таблица истинности.

Табл. истинности для ФАЛ. Табл. 2

Нахождение номера ФАЛ: F1

N(F1) = 20 + 21 + 23 + 25+ 27 + 26 + 29 + 212 + + 213 + 214 = 29419

Нахождение номера ФАЛ: F3

N(F3) = 21 + 22 + 212 + 28+ 29 + 210 + 211 = 7942

Нахождение номера ФАЛ: F5

N(F5) = 20 + 23 + 25 + 26 + 27 + 29+ 210 + 213 + + 214 = 26345

2.5. Представление ФАЛ в совершенной нормальной форме.

Представим выбранные признаки в совершенной дизъюнктивной нормальной форме (СДНФ) и совершенной конъюнктивной нормальной форме (СКНФ). Для этого из таблицы истинности ФАЛ (см. табл. 2) выпишем конституэнты 0 и 1.

ФАЛ в СДНФ примет вид:

F1(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

F3(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

F5(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

ФАЛ в СКНФ примет вид:

F1(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F3(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F5(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

2.6. Минимизация ФАЛ

Проведем минимизацию полученных ФАЛ при помощи карты Карно и представим их в ДНФ. Для этого попытаемся оптимальным образом объединить 0-кубы в кубы большей размерности. Клетки, образующие k-куб, дают минитерм n-k ранга, где n - число переменных, которые сохраняют одинаковое значение на этом k-кубе. Таким образом, получим ДНФ выбранных ФАЛ.

Рис 2.2а Рис 2.2б Рис 2.2в

Проведем минимизацию алгебраическим путем, воспользовавшись тождеством а È а = а.

1. XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ

2. XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP = YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP

3. Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP

2.7. Представление ФАЛ в виде куба

3. Исследование ФАЛ.


Страница: