Задачи графических преобразований в приложениях моделирования с использованием ЭВМРефераты >> Программирование и компьютеры >> Задачи графических преобразований в приложениях моделирования с использованием ЭВМ
[ T ] =
|
0 0 1 0
l m n 1
Как и в двумерном случае, все выписанные матрицы невырождены.
Приведем важный пример построения матрицы сложного преобразования по его геометрическому описанию.
Пример 3. Построить матрицу вращения на угол j вокруг прямой L, проходящей через точку А (a, b, c) и имеющую направляющий вектор (l, m, n). Можно считать, что направляющий вектор прямой является единичным:
l2 + m2 + n2 = 1
На рис. 10 схематично показано, матрицу какого преобразования требуется найти.
|
|
X
Рис. 10
Решение сформулированной задачи разбивается на несколько шагов. Опишем последовательно каждый из них.
1-й шаг. Перенос на вектор –А (-a, -b, -c) при помощи матрицы
1 0 0 0
|
|
0 0 1 0
-a -b -c 1
В результате этого преноса мы добиваемся того, чтобы прямая L проходила через начало координат.
2-й шаг. Совмещение оси аппликатс прямой L двумя поворотами вокруг оси абсцисс и оси ординат.
1-й поворот – вокруг оси абсцисс на угол y (подлежащий определению). Чтобы найти этот угол, рассмотрим ортогональную проекцию L’ исходной прямой L на плоскость X = 0 (рис. 11).
|
|
Y
Y
0
Рис. 11
Направляющий вектор прямой L’ определяется просто – он равен
(0, m, n).
Отсюда сразу же вытекает, что
cos y = n / d, sin y = m / d, (4.10)
где
d = m2 + n2 (4.11)
Соответствующая матрица вращения имеет следующий вид:
1 0 0 0
|
|
0 -m/d n/d 0
0 0 0 1
Под действием преобразования, описываемого этой матрицей, координаты вектора (l, m, n) изменятся. Подсчитав их, в результате получим
(l, m, n, 1)[ Rx ] = (l, 0, d, 1). (4.13)
2-й поворот вокруг оси оси ординат на угол q, определяемый соотношениями
сos q = l, sin q = -d (4.14)
Cоответствующая матрица вращения записывается в следующем виде:
l 0 d 0
|
|
-d 0 l 0
0 0 0 1
3-й шаг. Вращение вокруг прямой L на заданный угол j.
Так ка теперь прямая L совпадает с осью аппликат, то соответствующая матрица имеет следующий вид:
|
-sin
|
0 0 1 0
0 0 0 1
4-й шаг. Поворот вокруг оси ординат на угол -q.
5-й шаг. Поворот вокруг оси абсцисс на угол -y.
Однако вращение в пространстве некоммутативно. Поэтому порядок, в котором проводятся вращения, является весьма существенным.
6-й шаг. Перенос на вектор А (a, b, c).
Перемножив найденные матрицы в порядке их построения, получим следующую матрицу:
[ T ][ Rx ][ Ry ][ Rz ][ Ry ]-1[ Rx ]-1 [ T ]-1.
Выпишем окончательный результат, считая для простоты, что ось вращения ходит через начальную точку.
l2 + cos j(1 – l2) l(1 – cos j)m + n sin j l(1 – cos j)n – m sin j 0
l(1 – cos j)m – n sin j m2 + cos j(1 – m2) m(1 – cos j)n + lsin j 0
l(1 – cos j)n + m sin j m(1 – cos j)n – lsin j n2 + cos j(1 - n2) 0
0 0 0 1
Рассматривая примеры подобного рода, мы будем получать в результате невырожденные матрицы вида
a1 a2 a3 0
|
|
g1 g2 g3 0
l m n 1
При помощи таких матриц можно преобразовать любые плоские и пространственные фигуры.
Пример 4. Требуется подвергнуть заданному аффинному преобразованию выпуклый многогранник.
Для этого сначала по геометрическому описанию отображения находим его матрицу [ A ]. Замечая далее, что произвольный выпуклый многогранник однозначно задается набором всех своих вершин
Vi ( xi, yi, zi), i = 1,…,n,
Строим матрицу
x1 y1 z1 1
V = . . . . . . . . . . (4.18)
xn yn zn 1
Подвергая этот набор преобразованию, описываемому найденной невырожденной матрицей четвертого порядка, [ V ][ A ], мы получаем набор вершин нового выпуклого многогранника – образа исходного (рис. 12).
Z