Методы приобретения знаний в интеллектуальных системахРефераты >> Программирование и компьютеры >> Методы приобретения знаний в интеллектуальных системах
По сравнению с предыдущим методом приобретения знаний, этот метод имеет большую степень свободы и соответственно необходимо описать общие положения этого принципа.
1. Языки представления. Обучение по примерам — это процесс сбора отдельных фактов, их обобщение и систематизация, поэтому необходим унифицированный язык представления примеров и общих правил. Эти правила, будучи результатом обучения, должны стать объектами для использования знаний, поэтому и образуют язык представления знаний. И наоборот, язык представления знаний должен учитывать и определять указанные выше условия приобретения знаний.
2. Способы описания объектов. В случае обучения .по примерам из описаний отдельных объектов создаются еще более общие описания объектов некоторого класса, при этом возникает важная проблема: как описать данный класс объектов. В полном классе некоторых объектов следует определить меньший класс объектов, обладающих общим свойством (объекты только в этом классе обладают заданным свойством), но в действительности проще определить список объектов и убедиться, что все объекты в нем обладают общим свойством. Для некоторого типа задач можно эффективно использовать ложные примеры или контрпримеры, убедительно показывающие, что данные объекты не входят в этот класс Иллюстрацией применения контрпримеров может служить понятие «почти то».
3. Правила обобщения. Для сбора отдельных примеров и создания общих правил необходимы правила обобщения. Предложено несколько способов их описания: замена постоянных атрибутов языка на переменные, исключение описаний с ограниченным применением и т. п. Очевидно, что эти способы тесно связаны с языком представления знаний.
4. Управление обучением. В процессе обучения по примерам можно применять различные стратегии структуризации информации и необходимо управлять этим процессом в ответ на входные данные. Существуют два классических метода: метод «снизу-вверх», при .котором, последовательно выбираются и структурируются отдельные сообщения, и метод «сверху-вниз», при котором сначала выдвигается гипотеза, а затем она корректируется по мере поступления информации. На практике эти методы комбинируются, хотя управление обучением с максимальным эффектом не такая уж простая проблема.
При изучении метода приобретения знаний по примерам можно выделить следующий ряд методов:
1. Параметрическое обучение
2. Обучение по аналогии
3. Обучение по индукции.
Параметрическое обучение.
Наиболее простая форма обучения по примерам или наблюдениям состоит в определении общего вида правила, которое должно стать результатом вывода, и последующей корректировки входящих в это правило параметров в зависимости от данных. При этом используют психологические модели обучения, системы управления обучением и другие методы.
Примером обучающейся системы этой категории в области искусственного интеллекта является система Meta-Dentral. Эта система выводит новые правила путем коррекции правил продукций в процессе обучения или на основе исходных массспектральных данных параметрическое обучение в ней представлено в несколько специфичном виде, но все же она относятся к указанной выше категории, поскольку в системе задана основная структура знаний, которая корректируется последовательно по отдельным данным.
Ярким примером применения этого метода приобретения знаний могут также служить системы распознавания образов (обсуждавшиеся ранее в другом докладе). В них ясно просматривается основной принцип этого метода - в ходе обучения нейронная сеть автоматически по определенным заранее законам корректирует веса связей между элементами и значения самих элементов.
Метод обучения по индукции.
Среди всех форм обучения необходимо особо выделить обучение на основе выводов по индукции - это обучение с использованием выводов высокого уровня, как и при обучении по аналогии. В процессе этого обучения путем обобщения совокупности имеющихся данных выводятся общие правила. Возможно обучение с преподавателем, когда входные данные задает человек, наблюдающий за состоянием обучающейся системы, и обучение без преподавателя, когда данные поступают в систему случайно. И в том и в другом случае выводы могут быть различными, они имеют и различную степень сложности в зависимости от того, задаются ли только корректные данные или в том числе и некорректные данные и т. п. Так или иначе, обучение этой категории включает открытие новых правил, построение теорий, создание структур и другие действия, причем модель теории или структуры, которые следует создать, заранее не задаются, поэтому их необходимо разработать так, чтобы можно было объяснить все правильные данные и контрпримеры.
Индуктивные выводы возможны в случае, когда представление результата вывода частично определяется из представления входной информации. В последнее время обращают на себя внимание программы генерации программ по образцу с использованием индуктивных выводов.
Как уже было сказано, индуктивный вывод — это вывод из заданных данных объясняющего их общего правила. Например, пусть известно, что есть некоторый многочлен от одной переменной. Давайте посмотрим, как выводится f(х), если последовательно задаются в качестве данных пары значений (0, f(0)), (1, f(1)), Вначале задается (0, 1), и естественно, что есть смысл вывести постоянную функцию f(х)=1. Затем задается (1, 1), эта пара удовлетворяет предложенной функции f{х)= 1. Следовательно в этот момент нет необходимости менять вывод. Наконец, задается (2, 3), что плохо согласуется с нашим выводом, поэтому откажемся от пего и после нескольких проб и ошибок выведем новую функцию f(х)==х2—х+1, которая удовлетворяет всем заданным до сих пор фактам (0, 1), (1, 1), (2,3). Далее мы убедимся, что эта же функция удовлетворяет фактам (3, 7), (4, 13), (5, 21) ., поэтому нет необходимости менять этот вывод. Таким образом, из последовательности пар переменная-функция можно вывести многочлен второй степени. Грубо говоря, такой метод вывода можно назвать индуктивным.
Как видно из этого примера, при выводе в каждый момент времени объясняются все данные, полученные до этого момента. Разумеется, данные, полученные позже, уже могут и не удовлетворять этому выводу. В таких случаях приходится менять вывод. Следовательно, в общем случае индуктивный вывод—это неограниченно долгий процесс. И это не удивительно, если вспомнить процесс освоения человеком языков, процесс совершенствования программного обеспечения и т. п.
Для точного определения индуктивного вывода необходимо уточнить:
1) множество правил—объектов вывода,
2) метод представления правил,
3) способ показа примеров,
4) метод вывода и
5) критерий правильности вывода.
В качестве правил—объектов вывода—можно рассматривать главным образом индуктивные функции, формальные языки, программы и т. п. Кроме того, эти правила могут быть представлены в виде машины Тьюринга для вычисления функций, грамматики языков, операторов Пролога и другим способом. Машина Тьюринга—это математическая модель компьютера, ее в принципе можно считать программой. В случае когда объектом вывода является формальный язык, он сам определяет правила, а его грамматика — метод представления правил, поэтому говорят о грамматическом выводе.