Законы КеплераРефераты >> Астрономия >> Законы Кеплера
Допустим, что в определенный момент времени Земля (З) находится на прямой, соединяющей Солнце (С) с нашим ориентиром М (см. Рис. 4). Если в это время визировать с Земли направление на ориентир М, то получим направление СМ (Солнце—ориентир). Пусть это направление зафиксировано на небесном своде. Рассмотрим положение Земли в другой момент (З1). Если и Солнце (С) и ориентир М видны с Земли (З1) то в треугольнике СЗ1М известен угол a = СЗ1М. Направление прямой СМ относительно неподвижных звезд определено раз и навсегда. Но теперь, установив направление на Солнце З1С прямым наблюдением, можно определить и угол b = З1СМ. Следовательно, треугольник СЗ1М может быть теперь построен по стороне СМ и двум углам a и b для каждого положения З1 и при этом определится это самое положение З1 относительно заданного базиса СМ. Таким образом можно получить необходимое число точек, принадлежащих орбите Земли.
Но где же взять ориентир М? Изобретательный ум великого астронома использовал ориентир, хоть и не строго неподвижный, но периодически, через известные заранее интервалы времени, занимающий одно и то же положение в пространстве. Дело в том, что уже и тогда была довольно точно известна продолжительность марсианского года, т. е. период обращения Марса вокруг Солнца, — 687 дней. Используя эту величину в качестве исходной, теперь достаточно было учесть, что любое зафиксированное положение Марса (и длина отрезка МС) через целое число марсианских лет будет повторяться, в то время как положение Земли на ее орбите каждый раз будет, вообще говоря, иным. Таким образом можно установить такое количество точек орбиты Земли. Естественно, что, не располагай Кеплер данными многолетних наблюдений Браге за Марсом, быстрое решение этой задачи оказалось бы невозможным.
Результаты произведенных Кеплером вычислений совпали с его предположениями: Земля, как и другие планеты, вопреки мнению Коперника и его предшественников, не движется равномерно, а быстрее, когда она ближе к Солнцу, и медленнее, когда дальше от него. Так впервые в истории астрономии была показана ошибочность аристотелевского представления о равномерных движениях планет. Дальше, занимаясь вычислением расстояния Марс — Земля, Кеплер нашел, что наибольшее расстояние, в афелии (в частях радиуса земной орбиты), составляет 1,6678, а наименьшее, в перигелии, 1,3850. Тогда радиус орбиты Марса будет равен:
а расстояние Солнца от центра орбиты Марса
т.е. половине ранее выведенного из движения Мара полного эксцентриситета его орбиты (равного 0,1856). Таким образом Кеплером было установлено, что полный эксцентриситет планет делится центром орбиты на две равные части между Солнцем и эквантом.
Кеплеровская концепция тяготения.
В течение многих веков в естествознании господствовала аристотелевская точка зрения на природу тяготения: «Земля и Вселенная имеют общий центр; тяжелое тело движется к центру Земли, и происходит это вследствие того, что центр Земли совпадает с центром Вселенной».
В «Новой астрономии» по мнению Кеплера, тяготение — это «взаимное телесное стремление сходных (родственных) тел к единству или соединению». В примечаниях к своему более позднему сочинению о лунной астрономии Кеплер пишет: «Гравитацию я определяю как силу, подобную магнетизму — взаимному притяжению. Сила притяжения тем больше, чем оба тела ближе одно к другому . ». Этим самым Кеплер существенно продвигается в направлении, которое позже приводит Ньютона к открытию его знаменитого закона всемирного тяготения. Здесь же Кеплер добавляет: «Причины океанских приливов и отливов видим в том, что тела Солнца и Луны притягивают воды океана с помощью некоторых сил, подобных магнетизму». Пытаясь установить количественную зависимость между силой притяжения и расстоянием, Кеплер предположил, что сила притяжения прямо пропорциональна весу, но обратно пропорциональна расстоянию.
Внимание Кеплера было привлечено и к такому свойству материальных тел, как инерция. Сам термин «инерция» был введен в именно Кеплером. Он обозначил им явление сопротивления движению покоящихся тел. Инерция движения, по крайней мере до 1620 г., им не рассматривается. Важно отметить, что понятие инерции было распространено Кеплером (в его понимании) на внеземные тела и явления. В «Новой астрономии» он пишет: «Планетные шары должны быть по природе материальны ., они обладают склонностью к покою, или отсутствию движения».
Рис. 5 К выводу Кеплером закона площадей |
Для объяснения эксцентричности орбит Кеплер предположил, что планеты представляют собой «огромные круглые магниты», магнитные оси которых сохраняют постоянное направление, подобно оси волчка. Следовательно, планеты будут периодически то притягиваться ближе к Солнцу, то отталкиваться от него, в соответствии с расположением их магнитных полюсов. Далее Кеплер делит всю орбиту Земли на 360 частей, отметив на орбите положение Земли З1, З2, ., З360 в соответствующие моменты времени t1, t2, ., t360. Кеплер сопоставлял сумму расстояний между Землей и Солнцем в моменты времени ti и tk (и во все промежуточные моменты) с промежутком времени, необходимым планете, чтобы перейти из положения Зi, Зk. При сложении оказалось, что эта сумма отрезков не зависит от выбранного участка орбиты, а только от величины промежутка времени. Вспомнив затем, как Архимед для нахождения площади круга разлагал его на большое число треугольников, Кеплер заменяет сумму расстояний площадью сектора, описанного радиусом-вектором точки орбиты, считая эти величины пропорциональными, хотя и не говоря об этом прямо (см. Рис. 5). Необходимо заметить, что при выводе закона площадей (в конце 1601 — начале 1602 г.) Кеплер встретился и по-своему справился с задачей, имеющей прямое отношение к тому разделу математики, бурное развитие которого вскоре ознаменовало наступление нового этапа в истории математики, связанного с исчислением бесконечно малых. Его попытка бесконечного суммирования по существу была первым шагом в численном интегрировании. Второй закон определял изменение скорости движения планет по их орбите, однако сама форма орбиты оставалась еще неизвестной.
Теперь Кеплеру предстояло дать математическое описание той кривой, по которой движется планета, и эта задача оказалась самой сложной и трудоемкой. Пришлось проверять одну за другой многие гипотезы. При этом, правда, в распоряжении Кеплера уже было мощное средство исследования — его закон площадей. Это давало возможность, задавая гипотезу о кривой той или иной формы, вычислять положения, которые должен был бы занимать Марс на этой предполагаемой орбите в различные моменты времени, и сравнивать их с наблюдаемыми положениями. «Правда лежит между кругом и овалом, как будто орбита Марса есть точный эллипс». Но, поместив Солнце в его центр, Кеплер снова не пришел к согласующемуся с данными наблюдений результату.