Творческие задания и их роль в формировании познавательных интересов младших школьников на уроках русского языка и математики
Рефераты >> Педагогика >> Творческие задания и их роль в формировании познавательных интересов младших школьников на уроках русского языка и математики

Определение понятия — это такая логическая операция, которая раскрывает содержание понятия либо устанавливает значение термина.

С помощью определения понятий мы в явной форме указываем на сущность отражаемых в понятии предметов, раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других предметов. Так, например, давая определение понятия «трапеция», мы отличаем его от других четырехугольников, например, от прямоугольника или ромба. «Трапеция — четырехугольник, у которого две стороны параллельны, а две другие — не параллельны»(1). Приведем еще несколько определений понятий, которые принадлежат к двум различным видам определений. «Вещества, растворы которых проводят электрический ток, называют электролитами»(2). «Флорой называют видовой состав растений, произрастающих на той или иной территории»(3). «Естественный отбор — процесс выживания наиболее приспособленных особей, который ведет к преимущественному повышению или понижению численности одних особей в популяции по сравнению с другими»(4).

Реальные и номинальные определения

Если определяется понятие, то определение будет реальным. Если определяется термин, обозначающий понятие, то определение будет номинативным. Из вышеприведенных определений (1) и (4) — это реальные определения, а (2) и (3) — номинативные определения.

С помощью номинативных определений вводятся также новые термины, краткие имена взамен более сложных описаний предметов. Например, «навыком называется такое действие, в составе которого отдельные операции стали автоматизированными в результате упражнений».

Определения могут быть явными и неявными.

Явные определения

Явные определения — это такие, в которых даны определяемое понятие и определяющее понятие, и между ними устанавливается некоторое отношение равенства, эквивалентности. Самое распространенное явное определение — определение через ближайший род и видовое отличие. В нем устанавливаются существенные признаки определяемого понятия. Например: «Правильный многоугольник — многоугольник, у которого все стороны конгруэнтны и все углы равны», «Барометр — прибор для измерения атмосферного давления».

Признак, указывающий не тот круг предметов, из числа которых нужно выделить определяемое множество предметов, называется родовым признаком, или родом. В приведенных примерах родовыми являются понятия «многоугольник», «прибор».

Признаки, при помощи которых выделяется определяемое множество предметов из числа предметов, соответствующих родовому понятию, называются видовым отличием. При определении понятия видовых признаков (отличий) может быть один или несколько.

К явным определениям понятий относят и генетические определения. Они часто встречаются в школьных учебниках. Генетическими называются определения предмета путем указания на способ, которым образуется только данный предмет и никакой другой (это его видовое отличие). Например: «Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков».

Неявные определения

В отличии от явных определений, в неявных определениях на место определяющего понятия поставлен контекст или набор аксиом, или описание построения объекта, или показ.

1) В контекстуальных определениях содержание нового понятия раскрывается через отрывок текста, через контекст, через анализ конкретной ситуации, описывающий смысл вводимого понятия. Примером контекстуального определения может быть определения уравнения и его решения, приведенное в учебнике для III класса. Здесь после записи 3 + х = 9 и перечня чисел 2, 3, 6 и 7 идет текст: «х — неизвестное число, которое надо найти. Какое из этих чисел надо поставить вместо х, чтобы равенство было верным? Это число 6[11]». Из этого текста следует, что уравнение — это равенство с неизвестным числом, которое надо найти, а решить уравнение — это значит найти такое значение х, при подстановке которого в уравнение получается верное равенство.

2) Определение через аксиомы (аксиоматический метод). Приведем пример. Пусть дана система каких-то элементов (обозначаемых x, y, z .) и между ними установлено отношение, выражаемое термином «предшествует». Не определяя ни самих объектов, ни отношения «предшествует», мы высказываем для них следующие утверждения (т.е. следующие две аксиомы):

1. Никакой объект не предшествует сам себе.

2. Если х предшествует у, а у предшествует z, то х предшествует z .

Так с помощью двух аксиом определены системы объектов вида «х предшествует у». Например, пусть объектами х , у . являются люди, а отношение между х и у представляет собой «х старше у». Тогда выполняются утверждения 1 и 2. Если объекты х, у, z — действительные числа, а отношение «х предшествует у» представляет собой «х меньше у», то утверждение 1 и 2 также выполняются. Утверждения (т.е. аксиомы) 1 и 2 определяют системы объектов с одним отношением.

3) Индуктивные определения характеризуются тем, что определяемый термин используется в выражении понятия, которое ему приписывается в качестве его смысла. Примером индуктивного определения является определение понятия «натуральное число»:

1. 1 — натуральное число.

2. Если n — натуральное число, то n +1 натуральное число

3. Никаких натуральных чисел, кроме указанных в пунктах 1 и 2, нет.

С помощью этого индуктивного определения получается натуральный ряд чисел: 1, 2, 3, 4 . .Таков алгоритм построения натуральных чисел.

4) Остенсивные определения используются для введения терминов путем демонстрации объектов, которые этими терминами обозначают. Поэтому остенсивные определения называют еще определения путем показа. Например, таким способом определяются в начальной школе понятия равенства и неравенства.

2 · 7 > 2 · 6

78 – 9 < 78

37 + 6 > 37

Это неравенства

9 · 3 = 27

6 · 4 = 4 6

17 – 8 = 8 · 4

Это неравенства

В начальной школе при введении понятий чаще всего используются остенсивные и контекстуальные определения. Иногда встречаются определения, сочетающие контекст и показ. Примером такого определения является определение прямоугольника, приведенное в учебнике математики для II класса[12]. Здесь нарисованы (показаны) четырехугольники и приведен текст: «У этих четырехугольников все углы прямые». Под рисунком написано: «Это прямоугольники». Очень редко определения понятий даются через род и видовое отличие. Так, например, определяют умножение: «Сложение одинаковых слагаемых называется умножением».

Основными логическими приемами формирования понятий являются анализ, синтез, сравнение, абстрагирование, обобщение.

Для выделения существенных признаков необходимо абстрагироваться (отвлечься) от несущественных, которых в любом предмете очень много. Этому служит сравнение, сопоставление предметов. Для выделения ряда признаков следует произвести анализ, т.е. мысленно расчленить целый предмет на его составные части, элементы, стороны, отдельные признаки, а затем осуществить обратную операцию — синтез (мысленное объединение частей предмета, отдельных признаков, притом признаков существенных, в единое целое.


Страница: