Совершенствование математических способностей в коррекционной школе
Рефераты >> Педагогика >> Совершенствование математических способностей в коррекционной школе

- Подумала однажды точка: «Как же я смогу всё узнать, если всегда буду жить на одном месте?! Отправлюсь-ка я путешествовать!». Сказано-сделано (на доске прямая). Вышла точка на прямую и пошла по этой прямой (учитель передвигает по этой прямой точку). Шла-шла по прямой линии. Долго шла. Устала. Остановилась и говорит: «Долго ли я ещё буду идти? Скоро ли конец прямой?» Засмеялась прямая: «Эх ты, точка! Ведь ты не дойдёшь до конца. Разве ты не знаешь, что у прямой нет конца?»

- «Тогда я поверну назад»,- сказала точка. «Я, наверное, пошла не в ту сторону».

- «И в другую не будет конца. У прямой линии совсем нет концов».

- А вы, ребята, где в жизни могли видеть прямую без конца и без края? (Рельсы, провода). Посмотрите, и наша прямая не имеет конца. Я могу её продолжить (учитель показывает). Давайте начертим прямую у себя в тетради, только вся она у нас не поместится, начертим её часть. А что же наша точка?

- «Как же быть?»,- спрашивает она. «Что же мне так и придётся идти, идти и идти без конца?».

- «Ну, если ты не хочешь идти без конца, давай позовём на помощь ножницы»,- сказала прямая.

- «Давай позовём. А зачем нам ножницы?».

- «Сейчас увидишь». Тут, откуда ни возьмись, появились ножницы , щёлкнули перед самым точкиным носом и разрезали прямую (учитель имитирует разрезание прямой).

| | | _

- «Ура!»,- закричала точка. «Вот и конец получился! Ай, да ножницы! А теперь сделайте, пожалуйста, конец с другой стороны.

- «Можно и с другой»,- послушно щёлкнули ножницы.

| | _| | |

- «Как интересно!»,- воскликнула точка.

- «Что же из моей прямой получилось? С одной стороны конец, с другой стороны – конец. Как это называется?»

- «Это отрезок»,- сказали ножницы. «Теперь ты, точка, на отрезке прямой».

- «Отрезок прямой, отрезок прямой»,- с удовольствием повторила точка, прогуливаясь по отрезку от одного конца до другого.

- Давайте и мы начертим в тетради две точки. Приложите к ним линейку и соедините точки прямой линией. Получился отрезок. Начертите ещё отрезки. (ученики чертят разные отрезки: по длине, расположению на листе). К доске вызываются ученики начертить свой отрезок.

Хором повторяют название – «отрезок».

- Я запомню, - сказала точка,- это название. Мне нравится на отрезке! Но прямая мне тоже нравится. Жаль, что её не стало. Ведь теперь вместо прямой есть мой отрезок и ещё два этих…. - не знаю как их назвать. Тоже отрезки? (Как вы, ребята, думаете?- Нет. У отрезка 2 конца).

- Нет,- ответили ножницы. Ведь у них конец только с одной стороны, а в другую сторону нет конца. И называется это по-другому.

- А как они называются?

- Лучами.

Это луч. И это луч. | |

- А! – радостно сказала точка. – Я знаю почему они так называются. Они похожи на… (А кто скажет на что похожи эти лучи?) – солнечные лучи.

- Да, - подтвердили ножницы. Солнечные лучи начинаются на солнце и идут от солнца без конца, если только не встретят что-нибудь на своём пути. Например, Землю, Луну или спутник.

- Значит из прямой вот что получилось: мой отрезок и ещё два луча. Давайте и мы начертим лучи у себя в тетради.

- Скажите, чем же отличаются и что общего между прямой, отрезком и лучом? (общее – все прямые). Отрезок и луч имеют конец, только отрезок – два конца, а луч – один. У прямой конца совсем нет.

Далее следуют задания на закрепление.

Теперь рассмотрим фрагмент урока на арифметический материал.

Тема: «Сложение и вычитание круглых десятков».

(40+20);(50-30)

На доске десятки (полоски, содержащие 10 квадратов)

40+20

Учитель на доску выкладывает 4 полоски.

Учитель: сколько десятков на доске?

Ученик: четыре.

Учитель: какое это число?

Ученик: 40.

Учитель добавляет ещё 2 полоски в другую сторону доски.

Учитель: Добавлю ещё десятки. Сколько на доске?

Ученик: 2.

Учитель: какое число?

Ученик: 20.

Учитель: а теперь нам нужно узнать сколько десятков и тут (показывает на 4 десятка) и тут (на 2 десятка) вместе. Как это сделать?

Ученик: сложить 4 десятка и 2 десятка.

Учитель: записывает 4 десятка+2 десятка=6 десятков

40+20=60. Что общего в числах 40,20,60?

Ученик: 0 – единиц.

Учитель: Я могу ещё по-другому записать этот пример - в столбик. Посмотрите, как я это делаю. Пишу десятки под десятками, единицы под единицами. Складываю. Начинаю с единиц. Складываю единицы: 0 единиц+0 единиц=0 единиц. Складываю десятки: 4 десятка+ 2 десятка= 6 десятков. Читаю ответ: шестьдесят.

Аналогичный приём используется при сложении двузначных чисел, из которых одно оканчивается 0, 34+20 и сложение двузначного и однозначного числа 34+2. А также при сложении и вычитании двузначных чисел без перехода через десяток (например, 42+53, 28-12).

Иная запись в столбик используется при сложении двузначного числа с однозначным и двузначного с двузначным с переходом через десяток. Например, 26+4. Пишу десяток под десятком, единицу под единицей.

Пишу 4 под 6. Складываю единицы, 6+4=10. Записываю 10. Под десятком переписываю 2. Складываю. Получаем 30. Такая запись в столбик оформляется для того, чтобы избежать ошибок при получении двузначного числа в результате сложения единиц и перехода десятка в свой разряд. (Этот десяток забывается детьми).

Приведём ещё пример:

Пишу десяток под десятком, единицу под единицей. Складываю единицы. 9+3=12. Записываю 12. Складываю десятки 4+2=6. Записываю под десятками 6. Складываю. Ответ: 72.

Заметим, что письменно выполнение действий быстро и хорошо усваивается детьми и , вскоре, многие из них переходят у устным вычислениям.

Для того, чтобы у детей закрепились правила в памяти нужно чаще повторять уже ранее изученный материал. Это правило поможет и в дальнейшей работе учителя.

Заключение

1. Возникла необходимость обучать детей в структуре школ - интернатов, используя специальную методику проведения уроков математики.

2. Психолого-педагогические особенности детей олигофренов, отличающие их от сверстников, требуют пересмотра подхода к обучению в этих классах, используя специфические методики обучения.

3. Учебная деятельность организуется в форме дифференцированного подхода к учащимся, направленная на коррекцию познавательных процессов.

4. В обучении детей с глубокими интеллектуальными нарушениями невозможно ориентироваться лишь на усвоение определенного набора знаний, умений, навыков. Нецелесообразно ожидать, что навыки, умения, представления об окружающем удастся сформировать у детей в полном объеме. В зависимости от индивидуальных особенностей ребенок может достигать определенного уровня успешности в том или ином виде деятельности. Так, условием будет индивидуализация процесса обучения и воспитания.

Литература

1. Власова Т.А., Певзнер М.С. О детях с отклонениями в развитии. Москва, 1973.

2. Воспитание и обучение детей во вспомогательной школе под редакцией В.В. Воронковой. Москва, 1994.


Страница: