Оборудование летательных аппаратовРефераты >> Авиация и космонавтика >> Оборудование летательных аппаратов
Wг=(Wз + WЕ )´cosj=Wзг +WЕ/R;
Wв=(Wз + WЕ )´sinj= Wзв+(WЕ/R)´tgj,
где Wзг=Wз´cosj, Wзв=Wв´sinj - горизонтальная и вертикальная составляющие угловой скорости вращения Земли. Если скомпенсировать кажущийся уход ГПК в азимуте, то он может быть использован в качестве указателя истинного курса. Однако на высоких широтах (в районе полюсов) компенсация составляющей (WЕ/R)´tgj невозможна, так как в этом случае tgj®¥. Следовательно, в полярных районах самолетовождение при движении по локсодромии с помощью ГПК осуществить нельзя. Это возможно только при движении по ортодромии. Необходимо иметь в виду, что азимутальный уход ГПК из-за движения ЛА по ортодромии отсутствует. Следовательно, при движении по ортодромии азимутальный уход ГПК обусловлен только вертикальной составляющей Wзв угловой скорости вращения Земли. Этот уход компенсируется системами азимутальной широтной коррекции - моментной или кинематической.
Следует отметить, что направление и величина кажущегося ухода ГПК не зависят от направления и величины кинетического момента, а зависят только от его ориентации, вида траектории, географической широты места, а также от направления и величины скорости движения ЛА.
Плоскость ортодромии вращается вокруг местной вертикали с угловой скоростью, равной Wзв.
Если скомпенсировать уход гироскопа в азимуте из-за Wзв, то он будет строить эту плоскость. При этом ГПК является указателем ортодромии.
В этом случае ГПК (наряду с астрономическими средствами, которые здесь не рассматриваются) обеспечивает возможность навигации в полярных районах.
Плоскость ортодромии в исходном пункте маршрута ИПМ задается начальным путевым углом ортодромии НПУО, отсчитываемым от северного направления географического меридиана, причем в ИПМ этот угол равен истинному курсу (рис. 4), то есть НПУО = Yипм (рис.14.20).
С помощью ГПК это осуществляется, например, выставкой его главной оси ZW в плоскости географического меридиана ИПМ и последующей компенсацией азимутального ухода из-за Wзв с помощью системы моментной широтной коррекции. При этом в промежуточном пункте маршрута ППМ главная ось ZW не будет совпадать с географическим меридианом ППМ (рис. 4), но будет сохранять направление географического меридиана ИПМ.
От этого направления и измеряется ортодромический курс. Если в ГПК применяется кинематическая азимутальная широтная коррекция, то произвольное положение его главной оси в пространстве (плоскости горизонта) предварительно согласуется с направлением на север, а затем компенсируется его уход в азимуте из-за Wзв.
Таким образом, если скомпенсировать азимутальный уход ГПК из-за Wзв, то его ориентация относительно ортодромии будет неизменной. Следовательно, если с помощью такого гирополукомпаса выдерживать постоянный ортодромический курс, равный начальному путевому углу ортодромии, то ЛА будет перемещаться по заданной ортодромии.
2.3. Собственный уход ГПК.
Собственный уход ГПК, как и любого гироскопа, обусловлен действием вредных моментов. Для авиационных гироприборов такими моментами являются моменты сил сухого трения Мтр в подшипниках (опорах) и в контактных токоподводах, а также моменты небаланса Мнб и моменты, создаваемые упругими токоподводами (последние применяются в случае ограниченного угла поворота элементов гироскопа).
Действие указанных моментов относительно оси наружной рамы приводит к уходу гироскопа вокруг оси внутренней рамы и погрешности в измерении курса не вызывает. Этот уход компенсируется системами межрамочной и маятниковой коррекции. Действие же вредных моментов Мхтр, Мхнб (рис. 5) относительно оси внутренней рамы приводит к уходу ГПК вокруг оси наружной рамы с угловой скоростью
wh=(Мхтр+Мхнб)/(Н´cosb), что вызывает погрешность в измерении курса.
Действие момента Мхтр очевидно из рис. 5.а. Момент небаланса Мхнб (рис. 14.16.б) возникает при смещении центра масс (ЦМ) гиромотора относительно центра подвеса О на величину l вследствие остаточной несбалансированности гироскопа в процессе производства, а также за счет люфтов и деформаций, появившихся в результате эксплуатации.
Если ЛА, на котором установлен ГПК, неподвижен или летит горизонтально, то к ЦМ будет приложена сила
F=m´g (m - масса гиромотора, g - ускорение силы тяжести).
Если ЛА летит с ускорением Vh, вектор которого направлен по оси наружной рамы, то в этом случае сила F=m´Vh.
Сила F и создает момент Мхнб = F´l. Как уже указывалось, для уменьшения вредных моментов применяются прецизионные подшипники и производится тщательная балансировка гироскопа.
Однако эти меры оказываются недостаточными. Поэтому для уменьшения моментов сил сухого трения применяется система "прокачки" подшипников и токоподводов, а для уменьшения влияния моментов небаланса используется электрическая "балансировка". В чем сущность работы системы "прокачки" и электрической балансировки мы рассмотрим в следующих занятиях данной темы.
2.4. Карданная погрешность ГПК.
Карданная погрешность ГПК в измерении курса возникает при наклонах ЛА по тангажу и крену. Она обусловлена поворотом наружной рамы (вместе со шкалой) вокруг ее оси за счет кинематики карданова подвеса. Этот поворот происходит при отклонениях наружной рамы от вертикального положения относительно оси, не совпадающей с главной осью или с осью внутренней рамы ГПК.
Действительно, если продольная ось ЛА (рис. 6а) совпадает с главной осью ГПК (примем это положение за нулевой курс), то:
· при наклонах ЛА по тангажу вместе с ним повернется наружная рама вокруг оси Х внутренней рамы, поворота же НР вокруг ее оси не будет;
· при наклонах ЛА по крену вместе с ним повернутся наружная рама и внутренняя рама (кожух гиромотора) вокруг главной оси Z гироскопа, при этом поворота НР вокруг оси h также не будет.
Таким образом, в рассматриваемом случае карданная погрешность ГПК не возникает. Она не возникает и тогда, когда продольная ось ЛА совпадает с осью Х внутренней рамы, в чем легко убедиться, проведя аналогичные вышеприведенным рассуждения.
Пусть теперь ЛА летит с каким-то курсом Y, при котором его продольная ось не совпадает ни с главной осью, ни с осью внутренней рамы ГПК, и пусть при этом ЛА поворачивается по тангажу. Очевидно, что этот поворот будет происходить вокруг оси АА, перпендикулярной к продольной оси ЛА и не совпадающей с осями Х и Z ГПК.
Конструктивно углы между главной осью Z и осью Х внутренней рамы , а также между осью Х и осью h наружной рамы прямые. То есть у ГПК может меняться только угол межу осями Z и h, причем направление оси Z в инерциальном пространстве остается неизменным. Поэтому ГПК можно представить в виде модели, изображенной на рис. 6б, где ось Z как бы "привязана" к какой-то звезде, олицетворяющей собой инерциальное пространство.
При повороте ЛА вокруг оси АА ось h отклонится от вертикали. При этом ось Х повернется как вокруг неподвижной оси Z, так и вместе с осью h и закрепленной на ней шкалой, вокруг оси h по направлению стрелки на величину DY. В результате индекс, нанесенный на корпусе прибора, окажется на отметке шкалы Y'=Y-DY.