Разработка эффективной системы энергоснабжения на основе ВИЭ
Рефераты >> Экономика >> Разработка эффективной системы энергоснабжения на основе ВИЭ

Здесь же показан график суточной энергии космического сол­нечного излучения, построенный по данным /18/.

Отметим, что мощность солнечного излучения, падающего на единичную площадку сориентированную каким-либо образом, зависит от ориентации этой площадки. Для ориентации единичной площадки введем следующие параметры (рис. 1.2):

h - угол высоты Солнца над горизонтом;

β - угол наклона площадки над горизонтом;

γ - азимутальный угол, т.е. угол отклонения проекции нормали к площадке от направления на солнечный полдень.

Согласно рис.1.1.2. наибольшая плотность мощности космичес­кого солнечного излучения будет при совпадении нормали к площадке и направления на Солнце. Так как положение Солнца относительно Земли непрерывно изменяется в течение года и суток, то для полу­чения максимально возможной плотности мощности солнечного излуче­ния углы b и g должны меняться соответствующим образом, т.е. необходимо непрерывное слежение за Солнцем.

Однако, как показали многочисленные работы /18,24,27 /, при этом сильно увеличивается стоимость солнечной установки, превышая стоимость прибавки мощности от слежения. В этой связи, для мало­мощных солнечных установок наиболее эффективными являются фикси­рованные солнечные приемники (коллекторы) /18,27/.

Следует отметить, что ориентация фиксированного солнечного коллектора не очевидна. Это объясняется следующими причинами :

- плотность мощности солнечного излучения зависит от проз­рачности атмосферы (см.(1.1.4.)) ;

- график потребления мощности может быть сдвинут в течении суток.

На рис.1.1.3. приведен пример плотности мощности солнечного излучения, реально падающего на солнечный коллектор. Здесь предполагается , что в утренние часы нет облачности , а в послеобе­денные часы появляется облачность. Если такие условия являются статистически устойчивыми, то очевидно , что целесообразно ори­ентировать солнечный коллектор не строго на юг, а на юго-восток, причем более точное его положение должно определяться специальны­ми оптимизационными расчетами .

Таким образом, для ориентации солнечных коллекторов необхо­димы статистические данные о прозрачности атмосферы или о реаль­ных суточных графиках поступающих через атмосферу потоков солнеч­ной энергии.

За солнечным излучением следят метеорологические станции в рамках государственных программ метеорологии, поэтому имеется достаточно статистических данных о графиках поступления солнечной энергии .

Проанализируем, как можно использовать эти статистические данные для создания солнечных энергоустановок.

Как уже отмечалось, для солнечных энергоустановок малой мощ­ности наиболее эффективным является фиксированный солнечный кол­лектор, причем его ориентация определяется статистическим графиком солнечного излучения.

Солнечное излучение зависит от времени суток и года, и проз­рачности атмосферы, поэтому для ориентации солнечного коллектора необходимо иметь соответствующие среднестатистические данные. В таблице 1.1.1. приведены данные о статистическом распределении плотности солнечного излучения, которые могут быть использованы для определения положения коллектора.

По данным таблицы 1.1.1. определяется сумма получаемой сол­нечной энергии за любой период года.

Таким образом проведенный анализ показал, что солнечное из­лучение обладает большой энергией и существует достаточно статис­тических данных и математический аппарат для проектирования сол­нечных энергоустановок.

Таблица 1.1.1.

Удельная мощность солнечного излучения на горизонтальную поверхность

Часы

суток

Мощность солнечного излучения, Вт/м2

Зима

Весна

Лето

Осень

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

0

3,9

16,9

31,0

42,6

54,3

58,2

46,5

31,0

15,5

3,5

0

0

0

15,5

50,4

112,4

190,0

263,6

314,0

337,3

325,6

279,1

232,6

174,5

96,9

42,6

11,6

0

38,8

124,1

228,7

337,3

422,6

492,3

500,1

507,8

461,3

383,8

298,5

201,6

108,5

31,0

3,9

0

11,6

46,5

100,8

155,1

193,8

221,0

217,1

182,2

155,1

100,8

42,6

7,8

0

0

1.2.Энергия ветра

Ветроэнергетика с ее современным техническим оснащением яв­ляется вполне сложившимся направлением энергетики. Примерно с 1973 года, когда резко возросли цены на нефть и нефтепродукты, энергия ветра все более часто стала использоваться для выработки электроэнергии во многих странах Мира, особенно в Европе и США /18 /. В СССР, а затем в России, ветроэнергетика отстает от веду­щих капиталистических стран, хотя географическое положение нашей страны наиболее благоприятно для использования именно этого вида ВИЭ. Особенно справедливо это для степных районов России, к кото­рым относится Ростовская область.

Суммарная кинетическая энергия ветра на Земле оценивается величиной порядка 0,7×1021 Дж /18/. Однако большая часть этой энергии выделяется над океанами. Тем не менее, как уже отмеча­лось, над равнинами, не покрытыми лесами, энергия ветра также до­вольно высока. Кроме того в такой местности ветер отличается большей устойчивостью, что особенно важно для работы ветроэнерге­тических установок.

Мощность ветрового потока (Sв) через единичную площадку (Fо) определяется по формуле:

, (1.2.1.)

где: Wв - кинетическая энергия ветра, Дж;

t - время действия ветра, с;

m - масса воздуха, перемещенная ветром через площадку Fо за время t, кг;

r - плотность воздуха, кг/м;

r=1,3 кг/м;

V - скорость ветра, м/с;

k - коэффициент энергии ветра, кг/м;

k=0,65 кг/м;

Таким образом мощность ветра пропорциональна его скорости в третьей степени, и для оценки этой мощности достаточно иметь ин­формацию о скорости ветра.


Страница: