Операции с ценными бумагами
Рефераты >> Финансы >> Операции с ценными бумагами

В табл. 1 приведено соотношение нормы текущей доходности и уровня риска по отдельным видам ценных бумаг США. Первые два показателя определяют норму текущей доходности по "безрисковым финансовым инвестициям", которую можно рассматривать как основу для последующей дифференциации показателя нормы текущей доход­ности других видов ценных бумаг. Степень дифференциации нормы текущей доходности по отдельным финансовым инструментам в конеч­ном счете зависит от уровня риска.

При оценке уровня риска риск потери капитала оценивается как бо­лее значительный, чем риск потери дохода от инвестиций. Поэтому об­щий уровень риска по правительственным облигациям, облигациям типа ААА (надежных эмитентов, с наивысшими инвестиционными ка­чествами) оценивается преимущественно по риску потери капитала, и средняя норма текущей доходности для подобных бумаг относительно невысока по сравнению с инвестициями в обыкновенные акции типа С (спекулятивные, с низшими инвестиционными качествами), где риск потери капитала достаточно высокий и средняя норма текущей доход­ности также высока.

Показатель текущей доходности используется для оценки эффектив­ности инвестиций, в частности, в ценные бумаги в соответствии с методами, принятыми в мировой практике.

Эти методы основаны на:

- оценке абсолютной эффективности инвестиций (метод чистой те-

кущей стоимости):

- оценке относительной эффективности инвестиций (метод внутренней нормы доходности).

Величина интегрального экономического эффекта (чистая приведен­ная стоимость) рассчитывается как разность дисконтированных, при­веденных к одному временному моменту денежных потоков поступле­ний и затрат, осуществляемых в процессе инвестирования:

T t

NVP=åCIFt/(1+i)t-åCOFt/(1+i)t

t=1 t=1

где NPV(Net Present Value) - чистая приведенная стоимость;

CIFt (Cach-in-How) - поступления денежных средств в момент времени t;

COFt (Cach-out-Flow) - выплаты денежных средств в момент времени t;

Т - продолжительность инвестиционного периода.

Положительное значение NPV свидетельствует о целесообразности инвестирования в соответствующий вид финансовых активов. Величи­на NPV формируется под влиянием двух основных показателей:

- величины чистого денежного потока (разницы между поступле­ниями и выплатами денежных средств в интервале времени T) от конк­ретного вида фондовых инструментов;

- нормы текущей доходности (ставки дисконтирования).

2.2. ЭФФЕКТИВНОСТЬ ПОРТФЕЛЯ. ДИВЕРСИФИКАЦИЯ.

Предположим, что инвестор купил какую-либо ценную бумагу по известной цене и через некоторое время намеревается продать ее по заранее не известной цене, а также за время владения этой бумагой инвестор рассчитывает получить дивиденды в неизвестном объеме.

Эффективность такой операции можно считать случайной величиной X. За период времени t эффективность ценной бумаги

Xt = Ct+1 - Ct / Ct

Где Ct+1 - цена продажи бумаги в (t+1)-й момент времени;

Ct - цена покупки бумаги в t-й момент времени.

Ожидаемой эффективностью (эффектом) будем считать математическое ожидание случайной величины X:

m = E(X)

Доход, получаемый инвестором от вложений в ценные бумаги, неизменно сопряжен с риском, представляющим собой возможность возникновения обстоятельств, при которых инвестор может понести потери. Принято выделять два типа рисков: систематический и несистематический.

Систематический риск определяется глобальными обстоятельствами, не зависящими от инвестора и эмитента. К таким обстоятельствам можно отнести политические события на уровне страны и на международном уровне, изменения законодательства, экономические реформы и т.д.

Несистематический риск определяется факторами, связанными с деятельностью предприятия-эмитента и изменениями рыночной конъюнктуры. Несистематический риск можно уменьшить путем диверсификации портфеля; систематический же риск путем диверсификации уменьшить нельзя.

Можно составить безрисковый портфель, но отсутствие риска для него будет означать отсутствие только несистематического риска, систематический риск остается. Например, а российских условиях безрисковым портфелем является портфель в иностранной валюте (долларах CША), но и он подвержен систематическому риску, связанному, напри­мер, с возможными изменениями законодательства, касающимися ог­раничений обращения иностранной валюты на территории России.

Если в течение длительного времени держать средства в виде без­рисковых активов, то и доход от них будет нулевым, поэтому большин­ство инвесторов опасается риска, но идет на некоторый риск, если он компенсируется дополнительным доходом.

В качестве меры риска, считая эффективность некоторой ценной бу­маги случайной величиной X, можно принять ее вариацию (дисперсию)

V=E{(X-m)2},

поскольку V представляет собой квадрат отклонения X от ожидаемого значения т. Если нет отклонения, т.е. V = О, то и риска нет, чем больше V, тем больше риск. Возникает вопрос, какой риск описывается вели­чиной V. Это зависит от того, какому риску подвергаются инвесторы в период времени, по которому выбирается статистика.

Для моделирования портфеля важное значение будет иметь величи­на стандартного (среднеквадратичного) отклонения и ковариация двух случайных величин X1 , X2:

V12 =Е{( X1 –т1)( X2–т2 )}.

Рис. 1. Эффективные портфели

Предположим теперь, что имеется четыре различных портфеля, от­меченных на рис. 1 точками 7, 2,3,4 с координатами mi (i = 1, 2, 3, 4). Портфели, лежащие правее, имеют больший риск. Портфели, которым соответствуют точки, находящиеся выше, имеют больший эффект. Очевидно, что опытный инвестор будет действовать при выборе из двух пор­тфелей Xi и Xj следующим образом: он выберет Xi если выполняются одно из условий:

E(Xi)=E(Xj), s (Xi) < s (Xj);

E(Xj)>E(Xj), s (Xi)= s (Xj ).

На графике этот выбор означает из первого и второго портфелей пер­вый (точка 1), из четвертого и второго - четвертый портфель (точка 4) В других случаях, когда

E(Xi)=E(Xj), s (Xi) < s (Xj)

каждый инвестор поступит соответственно своим предпочтениям и сво­ей склонности к риску. Однако если из всех возможных вариантов пор­тфелей выбрать все портфели, которые при каждом заданном уровне риска имеют максимальную ожидаемую эффективность (доходность) а при заданном уровне доходности имеют минимальный риск то это подмножество портфелей будет описываться кривой 1.- 4 (см рис 1)


Страница: