Галактики и их эволюцияРефераты >> Естествознание >> Галактики и их эволюция
В этих новых условиях контролирующий системное единство протогалактики эфир, сохраняя свою способность удерживать туманность от распада, наряду с общей оболочкой, охватывающей протогалактику целиком, создает частные оболочки вокруг каждого обособившегося фрагмента. Поэтому дальнейшее стягивание туманности приобретает комплексный характер: как целостное образование она продолжает сжиматься к центру масс протогалактик и, которым служит наиболее плотный центральный фрагмент - ядро; как фрагментарное образование она сжимается в каждом из своих фрагментов. Последние точно по тому же принципу, как протогалактическая туманность раздробилась на шаровые фрагменты, делятся на еще более многочисленные и мелкие образования – протозвездные облака. И снова происходит перераспределение усилий эфира. Теперь они уже направлены на: 1) удержание единой формы протогалактической туманности, которая за счет общего вращения туманности приобретает эллиптический вид; 2) удержание шаровых форм образовавшихся после дробления туманности фрагментов; 3) уплотнение вещества, оказавшегося в составе обособившихся протозвездных облаков.
Прошло еще какое-то время и гравитационным силам стягивания удалось настолько уплотнить вещество протозвезд, что в них в результате добровольного объединения атомов легчайших элементов в легкие сначала затеплились, а потом на полную мощь разгорелись термоядерные реакции. В космических небесах одна за другой во всё нарастающем темпе стали появляться водородно-гелиевые звезды. Так протогалактики повсеместно превратились в эллиптические галактики.
Добровольное объединение атомов легчайших элементов в легкие (термоядерная реакция) сопровождается выделением некоторого количества энергии. Физически ее происхождение вызвано тем, что для удержания получающегося в ходе реакции легкого атома в устойчивом состоянии требуется меньшая энергия связи, чем сумма энергий связи вошедших в его состав легчайших атомов. Избыток энергии связи в виде фотонов и нейтрино испускается в окружающее пространство. С позиций последовательного эволюционного развития материального мира Вселенной данное явление означает рождение очередной (четвертой по счету) энергетической сущности – термоядерной. При этом часть входившего в эфирные оболочки легчайших атомов вещества перерабатывается в излучение, чем и обеспечивается высокая оптическая и прочая энергетическая активность водородно-гелиевых звезд первого поколения.
2. Неустойчивость
Большинство попыток найти способы конденсации вещества Вселенной в галактики основаны на гипотезе, впервые подробно разработанной сэром Джеймсом Джинсом. Хотя сейчас принимается, что в ранней Вселенной газ расширялся в соответствии с релятивистской космологической моделью, идеи Джинса основывались на более простой ньютоновской модели Вселенной, где гравитационная неустойчивость возникает, когда сгусток более плотного вещества (называемый возмущением) становится достаточно малым и плотным. Характерный размер возмущений плотности, которые являются только слегка неустойчивыми, называется джинсовской длиной и, как было установлено, она зависит от скорости звука в среде, постоянной тяготения и плотности вещества.
Джинсовская масса определяется как масса вещества, которая может стать неустойчивой и начать сжиматься под действием собственного гравитационного поля. Согласно расчетам, в начале "эры вещества" джинсовская масса составляет около 105 солнечных масс, и, таким образом, в этот момент истории Вселенной возмущения с такими массами и больше (что включает все известные галактики) должны были стать неустойчивыми и сжаться. Простая модель Джинса не позволяет исследовать ситуацию во время "эры излучения", так как в этом простом анализе не учитывается влияние давления излучения на газ. Однако несколько астрономов и космологов исследовали более сложный случай при наличии излучения, и результаты приблизительно согласуются с результатами, полученными с использованием более простых моделей.
В поисках типа иррегулярности или неустойчивости, которая приводит к современной Вселенной, состоящей из галактик, астрономы исследовали много других видов неустойчивости, кроме гравитационных. Среди них - возможное отсутствие баланса вещества и антивещества, тепловые неустойчивости, флуктуации, связанные с ионизацией и ее зависимостью от температуры и вариации распределения заряда.
Если предполагается из соображений симметрии, что количество вещества во Вселенной было равно и равно сейчас количеству антивещества, то современное существование вещества и антивещества в изолированных областях во Вселенной, естественно, может быть результатом небольшого локального неравенства компонентов в ранней Вселенной после того, как вещество и антивещество отделились от излучения. Во время расширения Вселенной полная аннигиляция произойдет в тех областях, где количества вещества и антивещества равны, а там, где имеется исходный избыток одного из них над другим, часть вещества или антивещества останется. Распределение вещества и антивещества будет клочковатым, и сгустки будут сжиматься, образуя скопления галактик. Такая Вселенная в конце концов будет состоять из кусочков вещества и антивещества, расположенных в различных местах. В этом случае примерно половина видимых нами галактик будет состоять из антизвезд. Если мы отправимся в путешествие в такое место и попытаемся совершить посадку на планету из антивещества, то наши атомы бурно провзаимодействуют с атомами антивещества на месте посадки, и они аннигилируют друг с другом, что вызовет яркую вспышку света, но вряд ли сделает визит очень приятным. От нас ничего не останется, кроме дыры на поверхности в память о нашей авантюре.
Более вероятная гипотеза утверждает, что вначале количество вещества немного превосходило количество антивещества. Тогда большая часть вещества должна была проаннигилировать с антивеществом на ранних космических фазах при высокой плотности, оставив купающуюся в лучах света Вселенную с количеством вещества, как раз достаточным для образования галактик.
Другой механизм, который мог способствовать конденсации вещества - это тепловая неустойчивость. Области с немного повышенной плотностью остывают быстрее, чем их окружение. Более горячие окружающие регионы сильнее сжимают эти области, повышая их плотность. Таким образом, небольшое возмущение плотности может становиться все более неустойчивым.
Согласно еще одной гипотезе, предложенной Георгием Гамовым, гравитационные силы могут усиливаться «симулированной гравитацией», создаваемой в ранней истории Вселенной интенсивным полем излучения. Частицы в такой Вселенной, как правило, затеняют друг друга от излучения и в результате испытывают действие силы, направленной от каждой частицы к другой частице. Эта сила, с которой частицы подвергаются действию друг друга, ведет себя по закону обратных квадратов, подобно силе тяготения. Можно, например, представить себе две частицы, разделенные небольшим расстоянием в богатом излучением поле. Частицы поглощают энергию фотонов поля излучения и поэтому находятся под влиянием сил, действующих в разных направлениях. Рассмотрим ситуацию, когда одна частица поглощает фотон, приходящий с направления, противоположного направлению на вторую частицу. На эту частицу действует сила в направлении второй частицы.