Галактики и их эволюция
Рефераты >> Естествознание >> Галактики и их эволюция

Содержание

Введение. 3

1. Формирование галактик. 5

2. Неустойчивость. 10

3. Сжатие. 12

4. Наблюдая эволюцию галактик. 14

5. Типы галактик. 16

6. Перерождение галактик. 21

Заключение. 25

Список использованной литературы. 26

Введение

С древнейших времен людей интересовало, что же находится за горизонтом, и они отправлялись исследовать далекие и незнакомые земли. По мере того как Земля открывала человеку большинство своих белых пятен, астрономы стали выходить в область новых и не исследованных территорий за пределами нашей маленькой планеты. Сегодня исследователи Вселенной, используя современные телескопы и ЭВМ, продвигаются в направлении всё больших расстояний в поисках предела Космоса - последней его границы.

Столетия мы были узниками Солнечной системы, считая звезды просто украшениями сферы, расположенной за планетами. Потом человек признал в этих крошечных светящихся точках другие солнца, настолько далекие, что их свет идет до Земли многие годы. Казалось, что космос населен редкими одинокими звездами, и ученые спорили о том, простирается ли звездное население в пространстве неограниченно или же за некоторым пределом звезды кончаются, и начинается пустота. Проникая все дальше и дальше, астрономы нашли такой предел, и оказалось, что наше Солнце - одна из огромного числа звезд, образующих систему под названием Галактика. За границей Галактики была тьма.

XX век принес новое открытие: наша Галактика-это еще не вся Вселенная. За самыми далекими звездами Млечного Пути находятся другие галактики, похожие на нашу и простирающиеся в пространстве до пределов видимости наших крупнейших телескопов. Грандиозные звездные системы - одни из самых потрясающих и наиболее изучаемых современной астрономией объектов.

Одна из задач современной астрономии - понять, как образовались галактики и как они эволюционируют. Во времена Эдвина Хаббла и Харлоу Шепли было заманчиво верить в то, что типы галактик соответствуют разным стадиям их развития. Однако эта гипотеза оказалась неверной, и задача реконструкции историй жизни галактик оказалась трудной. Самой же трудной оказалась проблема первоначального возникновения галактик.

Природа Вселенной в те времена, когда еще не существовали галактики, неизвестна, и приписываемые ей гипотетические характеристики в значительной степени зависят от выбираемой космологической модели. Большинство принятых в настоящее время космологических моделей предполагает общее расширение, начиная с нулевого момента времени (сразу же после которого Вселенная имеет исключительно высокие плотность и температуру). Физические процессы, описывающие первичный взрыв в этих моделях, могут быть довольно надежно прослежены до момента, когда плотность и температура становятся достаточно низкими, чтобы стало возможным образование галактик. Примерно один миллион лет потребовался для того, чтобы Вселенная расширилась и остыла настолько, что вещество стало играть в ней важную роль. До этого преобладало излучение, и сгустки вещества, такие как звезды или галактики, не могли образовываться. Однако, когда температура стала равной примерно 3000 К, а плотность около 1021 г/см3 (значительно меньше плотности земной атмосферы, но по меньшей мере в миллиард раз больше современной плотности Вселенной), вещество, наконец, смогло формироваться. В это время в достаточных количествах могли образовываться лишь атомы водорода и гелия.

Хотя можно представить несколько механизмов образования галактик из этого водородно-гелиевого газа, найти хотя бы одну модель, работающую в вероятных условиях ранней Вселенной, трудно. Очень мало предпосылок для образования галактик в расширяющейся Вселенной с однородным распределением температуры и вещества. В такой идеализированной Вселенной никогда не будет галактик. Существование галактик во Вселенной и видимое преобладание их как форм вещества говорят о том, что догалактическая среда никак не напоминала такое идеализированное газовое облако. Вместо этого должны были существовать какие-то неоднородности. Однако какого типа эти неоднородности и откуда они взялись?

1. Формирование галактик

«Если рассматривать замкнутую систему, то общая масса системы и, следовательно, ее общее гравитирующее действие будут зависеть от всей энергии системы, то есть от совокупности энергии вещества и энергии поля тяготения».

А. Эйнштейн

Всякий взрыв непременно сопряжен с той или иной долей хаотичности, и чем мощней взрыв, тем больший хаос он производит. Наиболее мощным взрывом во Вселенной, в котором одновременно участвовало все вселенское вещество, несомненно, являлся Большой взрыв. Конечно, с учетом детерминизма теоретически возможно предопределение всех последствий даже такого взрыва. Для этого достаточно знать предшествовавшие ему физические условия, как-то: вращательный момент Протовселенной, общую массу и распределение плотности входившего в нее эфира. В этом случае имеется формальная возможность просчитать дальнейшее поведение каждого из 1080 образующихся при рождении вещества протонов. Однако очевидно, что практически решение такой задачи неосуществимо, тем более что заниматься ее решением вообще было некому. А потому приходится с возникшим после Большого взрыва хаосом считаться как с непреложным и не поддающимся точному описанию фактом. С позиций интересующих нас процессов первичный хаос во Вселенной означал всенаправленный выброс вещества из области сингулярности разнокалиберными по своей массе, скорости разлета, кинетической и вращательной энергии сгустками, плотность распределения вещества в которых по мере расширения объема Вселенной последовательно уменьшалась. Параллельно этому происходило и уменьшение скорости их разлета. С «возвращением (гравитационной) сущности на свое место» динамика разлета стала для вещества вообще физически невозможной. Наиболее энергетически выгодным для него оказалось движение по так называемым «геодезическим линиям», то есть по тем направлениям, где потенциалы гравитационного поля сохраняются практически неизменными, - своеобразным гравитационным монорельсам. Двигаясь по таким траекториям, вещество становится гравитационно-невесомым, а значит, перестает расходовать свою кинетическую энергию. С прекращением разлета вещества Вселенная стабилизирует свои размеры и переходит из стадии расширяющейся в стадию стационарной Вселенной.

В результате такой динамической перестройки характер энергетических процессов во Вселенной претерпел существенные изменения. Если на этапе существования последовательно убывавшая кинетическая энергия вещества преобразовывалась в кинетическую энергию эфира, то с наступлением действительности этот процесс прекратился. Значение каждой из этих составляющих кинетической энергии Вселенной становится практически неизменным. При этом важно иметь в виду, что веществу как первоисточнику кинетической энергии, в значительной мере принадлежала определяющая роль в распределении количеств кинетической энергии по различным областям единого эфирного тела Вселенной, которое (распределение) в силу уже отмеченной нами хаотичности разлета вещества характеризовалось весьма значительными отклонениями от равномерности.


Страница: