Эксперимент - основа естествознания
При кажущейся простоте получения и обработки первичных экспериментальных данных, т.е. результатов наблюдений и измерений, математическая обработка, обладая определенной спецификой, производится в рамках строгой теории ошибок, на основании которой количественно определяется достоверность окончательных результатов. Сколь бы точными ни были наблюдения и измерения, погрешности неизбежны, и задача естествоиспытателя заключается в том, чтобы приблизить экспериментальные данные к объективным значениям определяемых величин, т.е. уменьшить интервал неточности. Для этого каждый исследователь должен иметь представление обо всех ошибках, встречающихся в практике экспериментального исследования. Современная теория ошибок вооружает экспериментаторов надежными средствами корректировки экспериментальных данных.
Статистическая обработка — не только эффективное средство уточнения экспериментальных данных, отсеивания случайных ошибок, но и первый шаг обобщения их в процессе формирования научного факта. Разумеется, статистическая обработка — необходимая, но не достаточная операция при переходе от эмпирических данных к естественно-научным фактам
После уточнения экспериментальных результатов начинается следующая стадия — сравнение и обработка. Если в результате сравнения и обобщения готовится материал для последующих обобщений, то в науке фиксируется новое явление. Однако это не означает завершения процесса формирования научного факта. Вновь зафиксированное явление становится научным фактом после его интерпретации.
Таким образом, научный факт, полученный в эксперименте, представляет собой результат обобщения совокупности выводов, основанных на наблюдениях и измерениях характеристик исследуемого объекта при предсказании их в виде гипотезы.1)
2. Современные средства естественно-научных исследований
Специфика современных, экспериментальных и теоретических исследований
На протяжении всех этапов эксперимента естествоиспытатель руководствуется в той или иной форме теоретическими знаниями. В последнем столетии в силу ряда объективных причин основной профессиональной деятельностью некоторых ученых стала исключительно теоретическая работа. Одним из первых ученых, который не проводил никаких экспериментов, был немецкий физик Макс Планк.
Произошло, таким образом, деление естествоиспытателей на профессиональных теоретиков и экспериментаторов. Во многих отраслях естествознания возникли экспериментальные и теоретические направления и в соответствии с ними появились специализированные лаборатории и даже институты, например Институт теоретической физики. Такой процесс наиболее активно проходит во второй половине XX столетия. В прежние времена не только Ньютон и Гюйгенс, но и такие выдающиеся теоретики, как Максвелл, обычно сами экспериментально проверяли свои теоретические выводы и утверждения. В последние же десятилетия только в исключительных случаях
теоретик проводит экспериментальную работу, чтобы подтвердить выводы своих теоретических изысканий.
Одна из существенных объективных причин профессиональной обособленности экспериментаторов и теоретиков заключается в том, что технические средства эксперимента значительно усложнилась. Экспериментальная работа требует концентрации больших усилий, она не под силу одному человеку и выполняется в большинстве случаев целыми коллективом научных работников. Например, для проведения эксперимента с применением ускорителя, реактора и т.п. требуется относительно большой штат научных сотрудников. Поэтому даже при большом желании теоретик не в состоянии проверить на практике свои теоретические выводы и предложения.
Еще в 60-е годы нынешнего столетия, когда практически все отрасли естествознания находились на подъеме, академик П.Л. Капица с тревогой говорил о разрыве между теорией и экспериментом, между теорией и жизнью, между теорией и практикой, отмечая отрыв теоретической науки от жизни, с одной стороны, и, с другой стороны, недостаточно высокое качество экспериментальных работ, что нарушает гармоническое развитие науки.
Гармоническое развитие естествознания возможно тогда, когда теория опирается на достаточно крупную экспериментальную базу. А это означает, что для экспериментатора нужна хорошая материальная база: помещение со всевозможным специальным оборудованием, большой набор высокочувствительных приборов, специальные материалы, мастерские и т.п. Темпы развития естествознания в значительной степени обусловливаются совершенством такой материальной базы.
Отрыв теории от эксперимента, опыта, практики наносит громадный ущерб прежде всего самой теории и, следовательно, науке в целом. Отрыв от опыта и жизни характерен не только для естествоиспытателей, но и для философов, занимающихся философскими проблемами естествознания. Ярким примером может служить отношение некоторых философов к кибернетике в конце 40-х — начале 50-х годов, когда в отечественных философских словарях кибернетика называлась реакционной лженаукой. Если бы ученые руководствовались таким определением кибернетики, то, очевидно, освоение космоса и создание современных наукоёмких технологий не стало бы реальностью, так как сложные многофункциональные процессы, вне зависимости от их области применения, управляются кибернетическими системами.
Работа крупных ученых-естествоиспыгателей, внесших большой вклад в развитие современного естествознания, несомненно проходила в тесной взаимосвязи теории и эксперимента. Поэтому для развития естествознания на здоровой почве всякое теоретическое обобщение должно непременно проверяться на опыте. Только гармоническое развитие эксперимента и теории способно поднять на качественно новый уровень все отрасли естествознания.
Современные методы и технические средства эксперимента
Экспериментальные методы и технические средства современных естественно-научных исследований достигли высокой степени совершенства. Многие технические устройства эксперимента основаны на физических принципах. Но их практическое применение выходит далеко за рамки физики — о'дной из отраслей естествознания. Они широко применяются в химии, биологии и других смежных естественных науках. С появлением лазерной техники, компьютеров, спектрометров и другой совершенной техники стали доступны для экспериментального исследования неизвестные ранее явления природы и свойства материальных объектов, стал возможен анализ быстропроте-кающих физических и химических процессов.
Лазерная техника.
Для экспериментальных исследований многих физических, химических и биологических процессов весьма важны три направления развития лазерной техники:
- разработка лазеров с перестраиваемой длиной волны излучения;
- создание ультрафиолетовых лазеров;
- сокращение длительности импульса лазерного излучения до 1 пс (10-12 с) и меньше.
Чем шире спектр излучения лазера, в котором он может перестраиваться, тем ценнее такой лазер для исследователя. Среди лазеров с перестраиваемой длиной волны широко применяются лазеры на красителях. Длина волн излучения таких лазеров охватывает спектр от ближней ультрафиолетовой области До ближней инфракрасной, включая видимый диапазон, и легко перестраивается в этом спектре. К настоящему времени разработаны лазеры, длина волны которых составляет менее 300 нм, т.е. соответствует ультрафиолетовой области. К таким лазерам относится, например, криптон-фторидный лазер.