Эксперимент - основа естествознания
Рефераты >> Философия >> Эксперимент - основа естествознания

При кажущейся простоте получения и обработки первичных экспериментальных данных, т.е. результатов наблюдений и из­мерений, математическая обработка, обладая определенной спецификой, производится в рамках строгой теории ошибок, на основании которой количественно определяется достовер­ность окончательных результатов. Сколь бы точными ни были наблюдения и измерения, погрешности неизбежны, и задача естествоиспытателя заключается в том, чтобы приблизить экс­периментальные данные к объективным значениям определяе­мых величин, т.е. уменьшить интервал неточности. Для этого каждый исследователь должен иметь представление обо всех ошибках, встречающихся в практике экспериментального ис­следования. Современная теория ошибок вооружает экспери­ментаторов надежными средствами корректировки экспери­ментальных данных.

Статистическая обработка — не только эффективное сред­ство уточнения экспериментальных данных, отсеивания слу­чайных ошибок, но и первый шаг обобщения их в процессе формирования научного факта. Разумеется, статистическая об­работка — необходимая, но не достаточная операция при пере­ходе от эмпирических данных к естественно-научным фактам

После уточнения экспериментальных результатов начинает­ся следующая стадия — сравнение и обработка. Если в резуль­тате сравнения и обобщения готовится материал для после­дующих обобщений, то в науке фиксируется новое явление. Однако это не означает завершения процесса формирования научного факта. Вновь зафиксированное явление становится научным фактом после его интерпретации.

Таким образом, научный факт, полученный в эксперименте, представляет собой результат обобщения совокупности выво­дов, основанных на наблюдениях и измерениях характеристик исследуемого объекта при предсказании их в виде гипотезы.1)

2. Современные средства естественно-научных исследований

Специфика современных, экспериментальных и теоретических исследований

На протяжении всех этапов эксперимента естествоиспытатель руководствуется в той или иной форме теоретическими зна­ниями. В последнем столетии в силу ряда объективных причин основной профессиональной деятельностью некоторых ученых стала исключительно теоретическая работа. Одним из первых ученых, который не проводил никаких экспериментов, был не­мецкий физик Макс Планк.

Произошло, таким образом, деление естествоиспытателей на профессиональных теоретиков и экспериментаторов. Во многих отраслях естествознания возникли экспериментальные и теоретические направления и в соответствии с ними появи­лись специализированные лаборатории и даже институты, на­пример Институт теоретической физики. Такой процесс наибо­лее активно проходит во второй половине XX столетия. В прежние времена не только Ньютон и Гюйгенс, но и такие вы­дающиеся теоретики, как Максвелл, обычно сами эксперимен­тально проверяли свои теоретические выводы и утверждения. В последние же десятилетия только в исключительных случаях

теоретик проводит экспериментальную работу, чтобы подтвер­дить выводы своих теоретических изысканий.

Одна из существенных объективных причин профессио­нальной обособленности экспериментаторов и теоретиков за­ключается в том, что технические средства эксперимента зна­чительно усложнилась. Экспериментальная работа требует кон­центрации больших усилий, она не под силу одному человеку и выполняется в большинстве случаев целыми коллективом на­учных работников. Например, для проведения эксперимента с применением ускорителя, реактора и т.п. требуется относи­тельно большой штат научных сотрудников. Поэтому даже при большом желании теоретик не в состоянии проверить на прак­тике свои теоретические выводы и предложения.

Еще в 60-е годы нынешнего столетия, когда практически все отрасли естествознания находились на подъеме, академик П.Л. Капица с тревогой говорил о разрыве между теорией и экспериментом, между теорией и жизнью, между теорией и практикой, отмечая отрыв теоретической науки от жизни, с одной стороны, и, с другой стороны, недостаточно высокое ка­чество экспериментальных работ, что нарушает гармоническое развитие науки.

Гармоническое развитие естествознания возможно тогда, когда теория опирается на достаточно крупную эксперимен­тальную базу. А это означает, что для экспериментатора нужна хорошая материальная база: помещение со всевозможным спе­циальным оборудованием, большой набор высокочувствитель­ных приборов, специальные материалы, мастерские и т.п. Тем­пы развития естествознания в значительной степени обуслов­ливаются совершенством такой материальной базы.

Отрыв теории от эксперимента, опыта, практики наносит громадный ущерб прежде всего самой теории и, следовательно, науке в целом. Отрыв от опыта и жизни характерен не только для естествоиспытателей, но и для философов, занимающихся философскими проблемами естествознания. Ярким примером может служить отношение некоторых философов к кибернетике в конце 40-х — начале 50-х годов, когда в отечественных философ­ских словарях кибернетика называлась реакционной лженаукой. Если бы ученые руководствовались таким определением киберне­тики, то, очевидно, освоение космоса и создание современных наукоёмких технологий не стало бы реальностью, так как сложные многофункциональные процессы, вне зависимости от их области применения, управляются кибернетическими системами.

Работа крупных ученых-естествоиспыгателей, внесших боль­шой вклад в развитие современного естествознания, несомнен­но проходила в тесной взаимосвязи теории и эксперимента. Поэтому для развития естествознания на здоровой почве вся­кое теоретическое обобщение должно непременно проверяться на опыте. Только гармоническое развитие эксперимента и тео­рии способно поднять на качественно новый уровень все от­расли естествознания.

Современные методы и технические средства эксперимента

Экспериментальные методы и технические средства современ­ных естественно-научных исследований достигли высокой сте­пени совершенства. Многие технические устройства экспери­мента основаны на физических принципах. Но их практическое применение выходит далеко за рамки физики — о'дной из от­раслей естествознания. Они широко применяются в химии, биологии и других смежных естественных науках. С появлени­ем лазерной техники, компьютеров, спектрометров и другой совершенной техники стали доступны для экспериментального исследования неизвестные ранее явления природы и свойства материальных объектов, стал возможен анализ быстропроте-кающих физических и химических процессов.

Лазерная техника.

Для экспериментальных исследований многих физических, химических и биологических процессов весьма важны три направления развития лазерной техники:

- разработка лазеров с перестраиваемой длиной волны из­лучения;

- создание ультрафиолетовых лазеров;

- сокращение длительности импульса лазерного излучения до 1 пс (10-12 с) и меньше.

Чем шире спектр излучения лазера, в котором он может пе­рестраиваться, тем ценнее такой лазер для исследователя. Сре­ди лазеров с перестраиваемой длиной волны широко применя­ются лазеры на красителях. Длина волн излучения таких лазе­ров охватывает спектр от ближней ультрафиолетовой области До ближней инфракрасной, включая видимый диапазон, и легко перестраивается в этом спектре. К настоящему времени разра­ботаны лазеры, длина волны которых составляет менее 300 нм, т.е. соответствует ультрафиолетовой области. К таким лазерам относится, например, криптон-фторидный лазер.


Страница: