О некоторых применениях алгебры матрицРефераты >> Математика >> О некоторых применениях алгебры матриц
(7)
(8)
. (9)
Так как - простое число и делит , то равенство (9) показывает, что или делится на .
Пусть . Тогда из тождества
,
верного в силу (5) следует, что на делится и число , а поскольку - простое, , так что в силу (7) - целое число. Таким образом, в рассматриваемом случае имеем:
и Предложение 4 доказано.
Если же , т.е. в силу (8) - целое, то, рассуждая как и выше, можем написать:
;
отсюда следует, что , т.е. - целое. В этом случае
.
§3. Матричный вывод формулы Кардано
В этом параграфе предлагается новый подход к выводу формулы Кардано для корней кубического произведения уравнения.
Пусть дано любое кубическое уравнение
. (1)
Если - его корень, то , поэтому
, т.е. есть корень уравнения, получающегося из (1) делением всех коэффициентов т правой части на , и обратно. Поэтому (1) эквивалентно уравнению.
. (2)
Таким образом, можно сказать, что решение любого кубического уравнения сводится к решению кубического уравнения со старшим коэффициентом, равным 1, т.е. уравнения вида
, (3)
которое получается из (2) после переобозначения коэффициентов; такое уравнение называется унитарным. Если к уравнению (3) применить подстановку
, (4)
получим:
, т.е.
, (5)
где и определяются по заданным коэффициентам уравнения (3). Уравнение (5) эквивалентно уравнению (3), поэтому достаточно научиться решать уравнения типа (5). В силу этого, обозначив через неизвестное, мы видим, что решение любого кубического уравнения вида
, (6)
называется приведенным или (неполным) кубическим уравнением. Покажем теперь, как можно найти все корни уравнения (6). Для этого заметим, что в силу тождества (1) §2, полученного с использованием циркулянта третьего порядка имеет место тождество
, (7)
где - любые числа, - один из корней третьей степени из единицы, так что (проверка тождества опирается на равенство ). Попробуем теперь отождествить наше уравнение (6) с уравнением
, (8)
т.е. положим
где и пока неизвестны. Чтобы вычислить их, имеем систему
которая показывает (в силу теоремы Виета), что и являются корнями квадратного уравнения
т.е.
и поэтому
(9)
Таким образом, уравнение (6) эквивалентно уравнению (8), в котором и определяются по формулам (9). В свою очередь, уравнение (8) в силу (7) равносильно уравнению
и теперь получаем:
(10)
где и определяются по (9). При этом надо иметь ввиду, что кубические корни из (9) имеют по три значения и их необходимо комбинировать с учетом равенства ; если одна пара значений и выбрана указанным образом, то все три корня определяются по формулам (10). Сказанное можно представить и по другому; можно сказать, что значения неизвестного определяются из равенства