Математическая Логика
Рефераты >> Математика >> Математическая Логика

Опр: Предположим дана функция и есть . Грань называется отмеченной, если она целиком содержится в носителе Т.

Опр: Максимальная грань – это такая грань, которая не содержится ни в какой грани более высокой размерности.

Предложение: Любую отмеченную грань можно вложить в максимальную грань.

Предложение:

(Носитель любой функции можно разложить в объединение нескольких граней разной размерностей)

Предложение: Носитель любой функции разлагается в объединение всех своих максимальных граней.

Опр: Элементарная конъюнкция называется минимальной, если её носитель является максимальной гранью. Следовательно всякая булева функция разлагается в дизъюнкцию всех своих элементарных конъюнкций.

Опр: Сокращенная ДНФ – разложение данной булевой функции в соответствующие ДНФ, которые соответствуют объединению её максимальных граней.

Теор: Минимальная ДНФ может быть получена из сокращенной отбрасыванием некоторого количества слагаемых, возможно пустого.

3 Логические Исчисления.

3.1 Исчисления высказывания (ИВ).

3.1.1 Определения.

Опр: V – словом в алфавите А, называется любая конечная упорядоченная последовательность его букв.

Опр: Формативная последовательность слов – конечная последовательность слов и высказываний , если они имеют формат вида:

Опр: F – формулой ИВ, называется любое слово, входящее в какую-нибудь формативную последовательность.

Пример:

Опр: Аксиомы – специально выделенное подмножество формул.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Reg – правила вывода ИВ (некоторые правила преобразования первого слова в другое).

a – символ переменной

- произвольное слово ИВ (формула)

Отображение действует так, что на место каждого вхождения символа а , пишется слово .

Пример:

Правило modus ponens:

3.1.2 Формальный вывод.(простейшая модель доказательства теоремы)

Опр: Последовательность формул ИВ, называется формальным выводом, если каждая формула этой последовательности имеет следующий вид:

Опр: Выводимый формулой (теоремой) ИВ называется любая формула входящая в какой-нибудь формальный вывод. - выводимая формула ИВ.

Пример:

1)

2)

3)

4)

5)

6)

Правило одновременной подстановки.

Замечание: Если формула выводима, то выводима и

Возьмем формативную последовательность вывода и добавим в неё , получившаяся последовательность является формальным выводом.

(Если выводима то если , то выводима )

Теор: Если выводимая формула , то ( - различные символы переменных) выводима


Страница: