Мультипликативная группа поля; Неприводимые многочлены
Рефераты >> Математика >> Мультипликативная группа поля; Неприводимые многочлены

Свойство мультипликативной группы поля.

Конечная подгруппа мультипликативной группы любого поля циклична.

Доказательство.

Проведем доказательство от противного. Пусть - конечная подгруппа. Предположим, что G не является циклической группой. Рассмотрим первое каноническое разложение: , где n>1 и n | m. Тогда G , а значит и содержит подгруппу H . Для каждого (а всего в H элементов ) имеем: . Поэтому уравнение в поле k имеет не менее корней, что невозможно, так как степень этого уравнения равна n <.

Следствие.

Мультипликативная группа конечного поля циклична.

Заметим, что этот результат нетривиален даже для простейших конечных полей GF(p). Образующие элементы группы называются первообразными корнями по модулю p. В следующей таблице приведены наименьшие первообразные корни по некоторым модулям:

модуль

3

5

7

11

13

17

19

23

29

31

37

41

первообразный корень mod(p)

Неприводимые многочлены над некоторыми полями.

1. Поле комплексных чисел C. Имеет место фундаментальная теорема Гаусса: Всякий многочлен положительной степени над полем C имеет корень. Из нее вытекает, что над полем C неприводимы только многочлены первой степени.

2. Поле вещественных чисел R. Чтобы перейти от поля C к полю R, заметим, что отображение, сопоставляющее каждому комплексному числу z сопряженное число является изоморфизмом поля на себя (автоморфизмом ) и переводит поле R в себя. Отсюда вытекает, что для всякого и всякого имеет место формула: = (), где - многочлен с комплексно сопряженными коэффициентами. Пусть теперь - многочлен положительной степени. По теореме Гаусса он имеет корень. Но, ) = 0. Если , то многочлены ( x - ) и ( x - ) взаимно просты и из делимости многочлена p ( по теореме Безу) на ( x - ) и на ( x - ) следует его делимость на их произведение . Следовательно, над полем R неприводимыми будут , во первых, все многочлены первой степени, а, во-вторых, те многочлены второй степени, которые не имеют корней в R ( то есть у которых дискриминант отрицателен). Все прочие многочлены - приводимы.

3. Поле рациональных чисел Q.

Если q ненулевой многочлен с рациональными коэффициентами, то, приводя их к общему знаменателю, можно записать: q = () = , где все коэффициенты целые числа, ОНД() = 1 и ,>0 . Легко видеть, что многочлен и число определены однозначно. Будем называть примитивным многочленом, соответствующим многочлену q.

Лемма : .

Для всякого целочисленного многочлена w = и простого числа p обозначим через многочлен над полем GF(p), коэффициенты которого получаются из соответствующих коэффициентов w приведением по модулю p : . Очевидно, что отображение является гомоморфизмом кольца Z[x] в кольцо GF(p)[x]. Многочлен w будет примитивным тогда и только тогда, когда для любого p . Поскольку в кольце GF(p)[x] нет делителей нуля, отсюда и вытекает утверждение леммы.


Страница: