Изоморфизмы и гомоморфизмыРефераты >> Математика >> Изоморфизмы и гомоморфизмы
Критерий инъективности гомоморфизма групп
Гомоморфизм групп инъективен тогда и только тогда, когда Ker ={}.
Доказательство
Поскольку , и значит, если инъективно в ядре не может быть других элементов и таким образом Ker ={e}. Обратно, пусть ядро состоит только из нейтрального элемента и x и y - два таких элемента , что . Тогда и значит и потому равно . Отсюда получаем x=y и инъективно.
Следствие
Если Ker = {e}, то изоморфно отображает на подгруппу Im .
Теорема Кэли
Всякая конечная группа порядка n изоморфна подгруппе группы перестановок из n элементов.
Доказательство
Пусть G={}- группа порядка n. Составим для нее таблицу Кэли. В i-ой строке этой таблицы выписаны элементы , которые только порядком следования отличаются от первоначального набора элементов группы. Обозначим полученную перестановку . Определим отображение по формуле . Как нам известно, произведению элементов группы G отвечает композиция перестановок, то есть -гомоморфизм. Если, то, в частности, и значит. Таким образом, Ker тривиально и определяет изоморфизм между G и подгруппой Im в .
Теорема о гомоморфизме для групп
Пусть сюръективный гомоморфизм. Тогда факторгруппа изоморфна . Если эти изоморфные группы отождествить, то превращается в естественный гомоморфизм .
Доказательство
Обозначим H=ker . Следующим образом определим отображение
. Пусть С произвольный элемент то есть некоторый смежный класс группы по ее подгруппе H. Возьмем любой . Тогда не зависит от выбора элемента x. В самом деле, если любой другой элемент, то y=x*h, где и значит, . Положим: . Используя правило перемножения смежных классов, получаем: Ф((x*H)*(y*H)) =Ф((x*y)*H)= = Ф(x*H)Ф(y*H), то есть построенное отображение - гомоморфизм. Если любой элемент, то поскольку сюръективно, найдется такой , что . Но тогда Ф(x*H)=. Значит Ф - сюръективно. Если Ф(x*H)= , то ф(x)= , и потому x*H=H= . Это доказывает, что Ker Ф=е и значит Ф - инъективно и, следовательно, является изоморфизмом. Поскольку(x)= Ф(x*H), мы видим, что если считать изоморфизм Ф тождественным отображением ( то есть отождествить и G/H), отображение совпадет с естественным гомоморфизмом, переводящим x в x*H.
Следствие
Всякий гомоморфизм определяет изоморфизм между факторгруппой и подгруппой Im .
Примеры
1. Пусть ={1, -1} с операцией умножения. Определим гомоморфизм ), сопоставляя каждой четной перестановке число 1, а нечетной - число (-1). Тогда Ker - подгруппа четных перестановок. Очевидно, что при n>1 сюръективно. По теореме о гомоморфизме -нормальная подгруппа в и .