Аппроксимация функцийРефераты >> Математика >> Аппроксимация функций
Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.
Коэффициент корреляции вычисляется по формуле:
, (2.3.1)
где , и ¾ среднее арифметическое значение соответственно по x и y.
Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе к 1, тем теснее линейная связь между x и y.
В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.
Корреляционное отношение вычисляется по формуле:
, (2.3.2)
где , а числитель характеризует рассеяние условных средних около безусловного среднего .
Всегда . Равенство соответствует некоррелированным случайным величинам; тогда и только тогда, когда имеется точная функциональная связь между y и x. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина используется в качестве индикатора отклонения регрессии от линейной.
Корреляционное отношение является мерой корреляционной связи y с x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построенная кривая отражает эмпирические данные вводится еще одна характеристика ¾ коэффициент детерминированности.
Для его описания рассмотрим следующие величины. - полная сумма квадратов, где среднее значение .
Можно доказать следующее равенство
.
Первое слагаемое равно и называется остаточной суммой квадратов. Оно характеризует отклонение экспериментальных данных от теоретических.
Второе слагаемое равно и называется регрессионной суммой квадратов и оно характеризует разброс данных.
Очевидно, что справедливо следующее равенство .
Коэффициент детерминированности определяется по формуле:
. (2.3.3)
Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности , который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y.
Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.
3. Расчет коэффициентов аппроксимации в Microsoft Excel.
Вариант №22
Функция y=f(x) задана таблицей 1
Таблица 1
Исходные данные.
|
|
|
|
|
|
|
|
|
|
12.85 | 154.77 | 9.65 | 81.43 | 7.74 | 55.86 | 5.02 | 24.98 | 1.86 | 3.91 |
12.32 | 145.59 | 9.63 | 80.97 | 7.32 | 47.63 | 4.65 | 22.87 | 1.76 | 3.22 |
11.43 | 108.37 | 9.22 | 79.04 | 7.08 | 48.03 | 4.53 | 20.32 | 1.11 | 1.22 |
10.59 | 100.76 | 8.44 | 61.76 | 6.87 | 36.85 | 3.24 | 9.06 | 0.99 | 1.10 |
10.21 | 98.32 | 8.07 | 60.54 | 5.23 | 25.65 | 2.55 | 6.23 | 0.72 | 0.53 |