Пятый постулат
Рефераты >> Литература >> Пятый постулат

Ведущий. Так оно и было. Ве­ками длились попытки придумать до­казательство — не удавалось никому. В тайну этих неудач именно и про­ник Н. И. Лобачевский глубоко и окончательно: пятый постулат недо­казуем и от -господствовавшего бо лее двух тысяч лет убеждения, чт( евклидова геометрия есть единствен ная мыслимая система геометриче ского познания мира, необходимо от казаться.

1-й ученик. Вечный . пятый. От Евклида

И до этих вот снегов

Постулат, как черный идо

В жертву требует умов .

2-й ученик. «Постулат недоказуем!»

Даже страшно произнесть.

Ах, догматики! Грозу им

Принесет такая весть.

3-й ученик. На уроках гео­метрии учитель говорил нам, что Лобачевский создал «неевклидову геометрию», в которой через точку можно провести более одной линии, не пересекающей данную прямую.

Ведущий. Верно. Лобачевский заменил евклидов пятый постулат более общей аксиомой параллель­ности, сохранив прочие аксиомы и постулаты. Чтобы легче было понять смысл аксиом Лобачевского, возьмем прямую АВ и -вне ее точ­ку С. Пусть САВ прямой.

Построим луч СD, пересекающий прямую АВ в точке D, лежащей вправо от точки А, и вообразим, что он вращается против часовой стрелки. По мере вращения луча СD непосредственное наблюдение пере­сечения его с АВ становится неосу­ществимым. По этой причине будет логически правомерным изменить на­ше представление о прямой линии и луче, которое теперь позволило бы нам вообразить, что луч СD в ка­кой-то момент своего вращения «от­рывается» от прямой АВ, т. е. пере­стает иметь с ней общую точку.

Тогда «прямую» (аа'), содер­жащую луч, впервые «оторвавший­ся» от АВ, назовем прямой, параллельной прямой АР в направлении луча АВ.

Рассмотрев симметрию с осью 4С, видим, что есть «прямая» (ЬЬ'), симметричная «прямой» {аа') и про­ходящая через точку С (рис. 39). Ясно, что и эту «прямую» (ЬЬ') сле­дует считать параллельной АВ, но уже в направлении луча АВ'. Следо­вательно, через С проходят две «пря­мые», параллельные прямой ВВ'.

С каждой из этих «прямых» луч СА, перпендикулярный прямой В'В, образует угол л(р), названный Лобачевским углом параллельности. Угол p (р) зависит от длины СА==р и имеет следующее свойство: все прямые, проходящие через С и об­разующие с перпендикуляром СА угол, меньший л (р), пересекают В'В, все остальные «прямые», про­ходящие через С , не пересекают В'В, их называют расходящимися прямыми или сверхпараллелями к прямой В'В. Через С проходит бесконечное мно­жество таких «прямых».

В частном случае, когда p (р) ==90°, получается постулат Евклида и соблюдаются все предложения обычной геометрии, «употребитель­ной», как называл ее Н. И. Лобачевский.

Угол p (р) возрастает и прибли­жается к прямому углу при приближении точки С к прямой В'В .

Из допущения, что p (р)<90° вытекают совершенно иные следствия, составляющие содержание но вой геометрии, так же непротиворечивой, как и евклидова геометрия но значительно точнее, чем евклидова, отображающей пространственные геометрические и физические соотношения, например, за предела ми мировых областей «средней величины».

Оказалось также, что взаимосвязь пространства и времени, от крытая X. Лоренцом, А. Пуанкаре, А. Эйнштейном и Г. Минковским и описываемая в рамках специаль­ной теории относительности, имеет непосредственное отношение к гео­метрии Лобачевского. Например, в расчетах современных синхрофазо­тронов используются формулы гео­метрии Лобачевского.

Такую геометрию Лобачевский сначала назвал «воображаемой», а потом (в конце жизни)—«пангеометрией», т. е. всеобщей геомет­рией. Теперь ее во всем мире на­зывают «геометрией Лобачевского».

Ученик.

Был мудрым Евклид,

Но его параллели,

Как будто бы вечные сваи легли.

И мысли его, что как стрелы летели,

Всегда оставались в пределах Земли.

А там, во вселенной, другие законы,

Там точками служат иные тела.

И там параллельных лучей миллионы

Природа сквозь Марс, может быть, провела.

Ведущий. Из понимания па­раллельности «по Лобачевскому» вйтекает много диковинных на пер­вый взгляд, но строго обоснован­ных следствий.

Ученик. Каких?

Ведущий. Например, в про­странстве Лобачевского параллель­ные прямые неограниченно сбли­жаются в направлении параллель­ности и потому существу­ют «бесконечные треугольники», сто­роны которых попарно параллельны , но нет подобных много­угольников.

Ученик.

Скоро порохом вспыхнет рассветная тишь.

Ты на четкий чертеж неотрывно глядишь.

После встал, потянулся устало.

Вечность тайну тебе нашептала,

И душой изумленной увидел ты то,

Что доселе не знал и не ведал никто:

Параллели стрелою нацелены в высь,

Параллели пронзают межзвездные дали.

Параллели — ты, чуешь? — стремятся ойтись,

Только сразу такое постигнешь едва ли.

Ведущий. В геометрии Лоба­чевского интересна и важна такая теорема: «Сумма углов треугольни­ка всегда меньше 180°».

Ученик. Позвольте на минутку перебить Вас. У Данте есть такие строки:

Как для смертных истина ясна,

Что в треугольник двум тупым не влиться.

Теперь-то нам понятно, что не мо­жет быть двух тупых углов не только в нашем «земном» треугольнике, но и в «звездном» треугольнике гео­метрии Лобачевского .

Ведущий. Очень интересно, но задержимся еще немного на тре­угольнике в геометрии Лобачевского.

Пусть a,b и g— углы треуголь­ника, тогда число d= 180°— (a +b+g)

называют «дефектом треугольника» и справедлива поразительная фор­мула выведенная Н. И. Лобачевским d= S/R2, где где S—площадь треугольника, а R— число, одинаковое для всех треугольников Величину К, имеющую размерность длины, назы­вают радиусом кривизны, простран­ства Лобачевского, а отрицательную величину k=1/R2 кривизной этого пространства.

В евклидовом пространстве d=0 (так как a +b+g=180°), поэтому его кривизна считается равной нулю.

Получается так, что наша «упо­требительная» геометрия является предельным (при dà 0) случаем геометрии Лобачевского.

1-й ученик.

В мире все криволинейно.

Прямота лишь сферы часть.

И Евклидово ученье

В космосе . теряет власть.

Ученик. Послушайте стихотво­рение поэта Александра Лихолета (Донецк), напечатанное в альмана­хе «Истоки» (М.: Молодая гвардия, 1983).

Лобачевский

«Все! Перечеркнуты «Начала».

Довольно мысль на них скучала,

Хоть прав почти во всем Евклид,

Но быть не вечно постоянству:

И плоскость свернута в пространство,

И мир

Иной имеет вид .

О чем он думал во вчерашнем?

О звездном облаке, летящем

Из ниоткуда в никуда?

О том, что станет новым взглядом:

Две трассы, длящиеся рядом,

Не параллельны никогда?

Что постоянному движенью

Миров сопутствует сближенье,

И, значит, встретятся они:

Его земная с неземными

Непараллельными прямыми

Когда-нибудь, не в наши дни?

Ведущий. Открытие Лобачев­ского настолько опередило развитие математической мысли того времени, было настолько непредвиденным и смелым, что во всем мире почти никто из математиков—его современников — не был готов к восприя­тию идей «воображаемой геомет­рии». Поэтому при жизни Лобачевский попал в тяжелое положение «непризнанного ученого». Приведу один любопытный факт обществен­ной жизни того времени.


Страница: