Аэродинамическое сопротивление автомобиля
Внутреннее сопротивление обусловлено движением воздушных потоков через системы вентиляции и охлаждения. Обычно пути движения воздушных потоков в этом случае имеют достаточно сложную конфигурацию, обладающую множеством местных сопротивлений. К числу последних относятся резкие изменения направления движения воздуха, фильтры, радиаторы и т. п.
Для количественной характеристики аэродинамического сопротивления используют следующую зависимость:
FX=CX*P*V2*FMID/2,
где: Р - плотность воздуха; V - скорость относительного движения воздуха и машины; FMID - площадь наибольшего поперечного сечения автомобиля (лобовая площадь); CX - коэффициент лобового сопротивления воздуха (коэффициент обтекаемости).
Обратите внимание на то, что скорость в формуле стоит в квадрате, а это значит: при увеличении скорости движения транспортного средства в два раза, сила сопротивления воздуха увеличивается в четыре раза, а затраты мощности вырастают в восемь раз!!! Поэтому при движении автомобиля в городском потоке аэродинамическое сопротивление автомобиля мало, на трассе же его значение достигает больших величин. А что говорить о гоночных болидах, движущихся со скоростями 300 км/час. В таких условиях практически вся вырабатываемая двигателем мощность тратиться на преодоление сопротивления воздуха. Причем за каждый лишний км/ч прироста максимальной скорости автомобиля приходится платить существенным увеличением его мощности или снижением CX. Так, например, работая над увеличением скоростных возможностей болидов, участвующих в кольцевых гонках Nascar, инженеры выяснили, что для увеличения максимальной скорости на 8 км/ч потребуется прирост мощности двигателя в 62 кВт! Или уменьшение СX на 15%.
Коэффициент лобового сопротивления определяют экспериментальным методом путем продувки автомобиля или его модели в аэродинамических трубах. От величины CX Вашего автомобиля в прямой зависимости находится количество расходуемого им топлива, а значит и денежная сумма оставляемая Вами у бензоколонки. Поэтому конструкторы всех фирм-производителей автомобильной техники постоянно пытаются снизить коэффициент лобового сопротивления своих творений. CX для лучших образцов современных автомобилей составляет величину порядка 0,28-0,25. Для примера, величина коэффициента лобового сопротивления "седьмого вазовского классического кирпича" составляет 0,46. Комментарии излишни. Наименьшим же коэффициентом отличаются автомобили, предназначенные для установления рекордов скорости - CX порядка 0,2-0,15.
Однако аэродинамика влияет не только на скоростные качества автомобиля и расход топлива. В ее компетенцию входят также задачи обеспечения должного уровня курсовой устойчивости, управляемости автомобиля, снижения шумов при его движении.
Особое внимание заслуживает влияние аэродинамики на устойчивость и управляемость автомобилем. Это в первую очередь связано с возникновением подъемной силы, которая серьезно влияет на ходовые качества машины - уменьшает силу сцепление колес с дорогой, а в некоторых случаях может быть одной из причин опрокидывания автомобиля. Причина появления подъемной силы у автомобиля кроется в форме его профиля. Длины путей движения воздуха под автомобилем и над ним существенно разняться, следовательно, обтекаемому сверху воздушному потоку приходится проходить его с большей скоростью, нежели потоку движущемуся внизу автомобиля. Далее вступает в действие закон Бернулли, по которому, чем больше скорость, тем меньше давление и наоборот. Поэтому внизу автомобиля создается область повышенного давления, а сверху - пониженного. В результате получаем подъемную силу. Конструкторы стремятся всякими ухищрениями свести ее к нулю, и частенько это им удается. Так, например, у "десятки" нулевая подъемная сила, а у "восьмерки" существует тенденция к подъему. Избавиться от подъемной силы можно установкой антикрыльев. Они создают дополнительную прижимную силу, хотя несколько и ухудшают общее аэродинамическое сопротивление. Следует заметить, что используются они в основном на гоночных болидах. Не следует путать между собой антикрыло и спойлер. Каждый из них выполняет свою задачу. Спойлеры, которые устанавливаются на серийные модели легковых автомобилей, предназначены в большей степени для лучшей организации движения потока воздуха.
На устойчивость автомобиля влияет и характер обтекания кузова воздушными потоками, направленными под определенным углом к его продольной оси. В этом случае результирующая сила лобового сопротивления, приложенная к его центру парусности, который находится на некотором расстоянии от поверхности контакта автомобиля с дорогой, а также смещен от его центра масс, создает разворачивающий момент и крен автомобиля. Ощутить всю прелесть данного явления можно, например, на "Таврии" при движении на высокой скорости в момент прохождения рядом "фуры".
Аэродинамические шумы, возникающие при движении автомобиля, свидетельствуют о плохой его аэродинамике или же о ее отсутствии вообще. Генерируются они за счет вибраций элементов кузова в моменты срыва воздушного потока с их поверхности. По наличию или отсутствию шумов на высоких скоростях движения можно определить степень проработки конструкции автомобиля в аэродинамическом смысле.
Как Вы понимаете, просчитать такое огромное количество параметров аэродинамики автомобиля невозможно. Поэтому ее созданием и доводкой конструкторы занимаются путем многочисленных продувок в аэродинамических трубах, как моделей автомобилей, так и натурных образцов.
Как оценить потери мощности на качение шин? Если дорога имеет твердое, ровное покрытие, а давление в шинах нормальное, то в широком диапазоне скоростей (примерно до 60–70% от максимальной) сила сопротивления качению шин почти постоянна и, по данным ряда исследований, составляет 0,013–0,015 полного веса машины. На скоростях 150–160 км/ч этот коэффициент может увеличиваться в зависимости от особенностей шины, давления в ней, температуры и т. д. до значений 0,019–0,020.
А вот другая составляющая пространства – это воздух. Чем быстрее едешь, тем сильнее его сопротивление. На очень высоких скоростях воздух становится "железным": так, на некоторых боевых самолетах при энергичных маневрах один квадратный метр крыла испытывает нагрузку до нескольких тонн! Сопротивление воздуха – главный враг высоких скоростных показателей.
Соотношение мощности к скорости
Так изменяется необходимая для движения мощность в зависимости от скорости автомобиля: N – мощность, л.с.; V – скорость, км/ч (м/с); Cx – коэффициент аэродинамического сопротивления; S – "лобовая площадь" автомобиля; 1 – расчетная мощность, с учетом изменения потерь на качение шин по скорости; 2, 6 – характеристики максимальной ("располагаемой") мощности двигателей ВАЗ-2103 и ВАЗ-2101; 3, 4 – результаты расчета для попутного и встречного ветра 5 м/с; 5 – расчетная кривая необходимой мощности для современного автомобиля со сниженным аэродинамическим сопротивлением Сх = 0,3.