АстрофизикаРефераты >> Астрономия >> Астрофизика
Другой оппонент – итальянец Коломбе – послал Галилею целый трактат, где между прочим возражал против лунных гор и вообще против всякого рода возвышений и углублений на луне. По мнению Коломбе, наблюдавшееся Галилеем на луне пропасти и впадины заполнены каким-то совершенно прозрачным кристаллическим веществом. Таким образом, Луна все-таки представляет собою точную сферу, как и предполагал «великий учитель Аристотель».
Флорентинец Франческо Сицци тоже выпустил памфлет против «Звездного вестника», где свел споры о новых неожиданных открытиях Галилея к чисто богословским тонкостям. Так, Сицци заявляет, что во второй книге Моисея и в четвертой главе книги пророка Захарии будто бы содержаться указания, что число планет на небе равно семи. Число семь вообще является символом совершенства, например, в голове человека – семь «отверстий» (два уха, два глаза, две ноздри и один рот). Аналогично бог создал семь планет: две «благодетельные» - Юпитер и Венеру, две «вредоносные» - Марс и Сатурн, две являющиеся «светилами» - Солнце и Луну, и одну «безразличную» - Меркурий. Отсюда Сицци делает вывод: никаких новых планет (т.е. спутников Юпитера) не может быть, а Галилей с его трубой грубо ошибся.
Таковы были аргументы тогдашних ученых. Однако открытия Галилея скоро были подтверждены. Существование спутников юпитера констатировал Иоган Кеплер. Он описал свои наблюдения в небольшой брошюре на латинском языке: «Рассказ Иоганна Кеплера о его наблюдениях четырех спутников Юпитера, которых флорентийский математик Галилей по праву открытия назвал Медическими светилами». Кеплер наблюдал в довольно посредственную трубу. Несколько раз в начале сентября 1610 года Кеплер ясно видел то двух, то трех спутников Юпитера, но в наблюдении четвертого не был уверен. В ноябре 1610 года Пейреск во Франции тоже регулярно, как и Галилей, стал наблюдать спутников Юпитера, задавшись целью составить таблицы их движения. В наблюдениях ему помогали Готье и Гассенди. Таблиц, однако, им составить не удалось, так как наблюдения их были недостаточно точны.
Галилею хотелось подтвердить сделанные им телескопические открытия, отведя нелепые обвинения его в том, что он все это просто придумал. Вскоре ему это удалось. Римская коллегия подтвердила с некоторыми, очень незначительными оговорками действительность телескопических открытий Галилея. Отцы-иезуиты римской коллегии сами наблюдали весьма тщательно и усердно, записи и чертежи их наблюдений юпитеровых спутников сохранились и были опубликованы в миланском издании сочинений Галилея. Таким образом, в ожесточенной борьбе между учеными-новаторами и учеными-схоластиками, занимавшим положение Аристотеля, победил Галилей. Но его победа над упрямыми противниками создала ему множество врагов среди ученых схоластического лагеря. Католическая церковь всячески поддерживала учение Аристотеля, так что печатные выступления Галилея против последнего расценивалось его противниками как выпад против церкви и общепринятого тогда церковного миро представления. Борьба Галилея за новую науку, за новое коперническое мировоззрение началась. В последующие годы эта борьба еще более развернулась и обострилась.
Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов. Линза А, обращенная к объективу наблюдения, называется объективом, а та линза В, к которой прикладывает свой глаз наблюдатель – окуляром. Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае – рассеивающей или отрицательной. В телескопе самого Галилея объективом служила плосковыпуклая линза, а окуляром – плосковогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы в телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами.
Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямые, соединяющие центры этих поверхностей, называются оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляются в линзе, собираются в точке оптической оси, называемом фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием.
Чем больше фокусное кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.
Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжение. Поэтому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение.
На рисунке 2 показан ход лучей в галилеевском телескопе. Так как небесные светила, практически говоря, находятся «в бесконечности», то изображение их получаются в фокальной плоскости, то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое увеличение изображение MN.
Главным недостатком галилеевского телескопа было очень малое поле зрения – так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По этой же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли.
В кеплеровском телескопе (рисунок 3) изображение CD получается действительное, увеличенное и перевернутое. Последнее обстоятельство, неудобное при наблюдениях земных предметов в астрономии несущественно – ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернуты телескопом «вверх ногами».
Первое из двух главных преимуществ телескопа – это увеличение угла зрения, под которым видим небесные объекты. Человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает только крупные детали, поперечник которых превышает 100 км. В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженным глазом на небесных телах не видно. Телескоп же увеличивает угол зрения в десятки и сотни раз.
Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка.
Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком. У галилеевской трубы выходного зрачка нет. В сущности, выходной зрачок – это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зренья. Во-вторых, с ростом увеличения становятся все заметней движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и десятки тысяч раз). Приходится искать некоторый оптимум и поэтому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз.