Ионно-плазменные двигатели с высокочастотной безэлектродной ионизацией рабочего тела
Рефераты >> Авиация и космонавтика >> Ионно-плазменные двигатели с высокочастотной безэлектродной ионизацией рабочего тела

Рисунок 3. Схема электронагревного ракетного движителя

Запишем уравнение баланса энергии в интегральной форме для промежутка времени в предположении установившегося процесса работы двигателя:

, (2.13)

где Qрас –потери энергии в двигателе, связанные с рассеянием ее в стенки камеры и сопла и др.;

Ср0, Сра – изобарные теплоемкости рабочего тела соответственно при температурах рабочего тела на входе в камеру и на выходе из сопла, Дж/(кг*К);

Т0, Та - температуры рабочего тела соответственно на входе в камеру и на выходе из сопла, К;

w0, wа – скорости потока рабочего тела соответственно на входе в камеру и на выходе из сопла, м/с.

Разделим все члены записанного уравнения на (), т.е. приведем его к удельной форме:

, (2.14)

Его можно записать иначе:

, (2.15)

где .

Связь параметров рабочего тела на срезе сопла с параметрами в камере определяется следующей зависимостью:

или

. (2.16)

С учетом допущения об идеальности рабочего тела:

. (2.17)

Исходя из предположения адиабатности течения, получим:

, (2.18)

хотя на самом деле течение является изоэнтропным, в данной формуле, так же как и в последующих, следует вместо k писать nиз, причем nиз<k.

Исходя из вышеприведенных формул, имеем:

. (2.19)

Связь параметров рабочего тела в критическом сечении сопла с параметрами в камере:

или

,

, (2.20)

,

.

Определим связь параметров рабочего тела в камере с площадью критического сечения сопла. Из уравнения:

, (2.21)

получим:

. (2.22)

Моделирование основных газодинамических процессов в ЭНД с ВЧ нагревом рабочего тела, в качестве которого использовались различные водород содержащие и водород не содержащие газы, осуществлялось с использованием вышеприведенных формул.

Заключение

С использованием приведенных выше формул были проведены численные расчеты рабочих характеристик реактивного двигателя для рабочих тел (как водород содержащих Н2, NН3, Н2О, так и водород не содержащих СО2, N2, Не2, Аr). Все расчеты производились для одинаковых термодинамических параметров в камере двигателя, для одних и тех же геометрических размеров камеры и сопла, и баллонов системы хранения и подачи рабочего тела. Полеченные результаты расчета сведены в таблицу 2 и графически представлены на рисунке 4. На рисунке 4 представлены зависимости удельного импульса ракетного двигателя, массы необходимого рабочего тела, массы СХП этого рабочего тела, и суммарной массы СХП, и рабочего тела от рода рабочего тела (проще говоря, от М и к рабочего тела). Из этой зависимости вытекает вывод о преимущественном использовании в качестве рабочих тел веществ с низкой молекулярной массой. Одним из наиболее доступных и широко распространенных веществ с низкой молекулярной массой является молекулярный водород. Здесь же представлена зависимость массы потребного рабочего тела и массы необходимой для его хранения СХП баллонного типа от рода рабочего тела.

Таблица 2

Параметр

Газ

Водо-

род

Гелий

Ам-

миак

Азот

Воз-

дух

Аргон

Ксе-

нон

Хим. формула

Н2

Не2

NН3

N2

Ar

Xe

Молекулярная масса, кг/моль

2

4

17

28

29

40

131

Газовая постоянная, Дж/(кг К)

4157

2078,5

489,06

296,93

286,69

207,85

63,466

Показатель адиабаты

1,4

1,66

1,29

1,4

1,4

1,66

1,66

Удельный импульс, с

5197,4

3191,5

1949

1388,8

1365,9

1010,6

567,06

Масса РТ, кг

9,6203

15,66

25,65

36

36,607

48,05

80,76

Масса СХП, кг

212,64

181,02

89,512

90,623

90,339

101,75

115,86

Масса всей системы, кг

222,26

196,68

115,16

126,62

126,94

149,8

196,62


Страница: