Жизнь и деятельность Роберта Милликена
Рефераты >> Исторические личности >> Жизнь и деятельность Роберта Милликена

Это по­след­нее на­блю­де­ние бы­ло в то вре­мя фак­ти­че­ски зна­чи­тель­но бо­лее важ­ным, чем из­ме­ре­ние за­ря­да элек­тро­на.

Мил­ли­кен за­кон­чил пер­вые из­ме­ре­ния за­ряда элек­тро­на в сен­тяб­ре 1909 го­да и незамед­лительно вы­сту­пил с со­об­ще­ни­ем на совеща­нии Бри­тан­ской ас­со­циа­ции со­дей­ст­вия нау­ке в Вин­ни­пе­ге. Хо­тя его име­ни не бы­ло в спи­ске док­лад­чи­ков, ему да­ли воз­мож­ность вы­сту­пить. Прав­да, он не пи­тал ни­ка­ких ил­лю­зий. Он хоро­шо по­ни­мал, что ре­зуль­та­ты его опы­тов явля­ются лишь пред­ва­ри­тель­ны­ми и что с по­мо­щью бо­лее со­вер­шен­ных в тех­ни­че­ском от­но­ше­нии при­бо­ров мо­гут быть по­лу­че­ны бо­лее точ­ные дан­ные.

“Воз­вра­ща­ясь в Чи­ка­го с это­го со­ве­ща­ния, я смот­рел из ок­на мо­ей поч­то­вой ка­ре­ты на рав­ни­ны Ма­ни­то­бы и вне­зап­но ска­зал се­бе: “Ка­кой глу­пец! Пы­тать­ся та­ким гру­бым спо­собом пре­кра­тить ис­па­ре­ние во­ды в во­дя­ных ка­пель­ках в то вре­мя, как че­ло­ве­че­ст­во за­тратило по­след­ние три­ста лет на усовершен­ствование мас­ла для смаз­ки ча­сов, стре­мясь по­лу­чить сма­зоч­ное ве­ще­ст­во, ко­то­рое вооб­ще не ис­па­ря­ет­ся!”

Ко­гда я вер­нул­ся в Чи­ка­го, у вхо­да в лабо­раторию я встре­тил Май­кель­со­на. Мы усе­лись на по­ро­ге и на­ча­ли бол­тать. Я спро­сил его, на­сколь­ко, по его мне­нию, точ­но из­ме­рил он ско­рость све­та. Он от­ве­тил, что из­ме­ре­ние про­изведено с точ­но­стью при­мер­но до од­ной де­сятитысячной. “Так вот, - ска­зал я, - я приду­маю ме­тод, при по­мо­щи ко­то­ро­го я смо­гу опре­делить ве­ли­чи­ну за­ря­да элек­тро­на с точ­но­стью до од­ной ты­сяч­ной, или грош мне це­на”.

Я не­мед­лен­но на­пра­вил­ся в мас­тер­скую и по­про­сил ме­ха­ни­ка из­го­то­вить воз­душ­ный кон­денсатор, со­стоя­щий из двух круг­лых ла­тун­ных пла­стин око­ло 10 дюй­мов в диа­мет­ре, ко­то­рые бы­ли бы за­кре­п­ле­ны на рас­стоя­нии при­мер­но шес­ти де­ся­тых дюй­ма од­на от дру­гой. В цен­тре верх­ней пла­сти­ны бы­ло про­свер­ле­но не­сколь­ко по­лу­мил­ли­мет­ро­вых от­вер­стий, сквозь ко­то­рые ка­пель­ки сма­зоч­но­го мас­ла, по­сту­паю­щие из рас­пы­ли­те­ля, мог­ли бы по­пасть в про­стран­ст­во ме­ж­ду пла­сти­на­ми. К пла­сти­нам бы­ли подклю­чены вы­во­ды мо­ей ба­та­реи на 10 ты­сяч вольт” . Мил­ли­кен на­ме­ре­вал­ся за­ря­дить ка­пель­ки мас­ла при по­мо­щи по­то­ка икс -лу­чей, как он де­лал это рань­ше с во­дой.

В те­че­ние трех лет, с 1909 по 1912 год, он по­свя­щал все свое вре­мя опы­там над капель­ками сма­зоч­но­го мас­ла.

“Ме­ня за­ча­ро­вы­ва­ла та аб­со­лют­ная уве­ренность, с ко­то­рой мож­но бы­ло точ­но пересчи­тать ко­ли­че­ст­во элек­тро­нов, си­дев­ших на дан­ной ка­п­ле, будь это один элек­трон или лю­бое их чис­ло, до сот­ни вклю­чи­тель­но. Для это­го тре­бовалось лишь за­ста­вить ис­сле­дуе­мую ка­п­лю про­де­лать боль­шую се­рию пе­ре­ме­ще­нии вверх и вниз, точ­но из­ме­рив вре­мя, по­тра­чен­ное ею на ка­ж­дое пе­ре­ме­ще­ние, а за­тем вы­счи­тать наи­меньшее об­щее крат­ное до­воль­но боль­шой се­рии ско­ро­стей.

Для то­го что­бы по­лу­чить не­об­хо­ди­мые дан­ные по од­ной от­дель­ной ка­п­ле, ино­гда тре­бовалось не­сколь­ко ча­сов. Од­на­ж­ды г-жа Мил­ликен и я при­гла­си­ли к обе­ду гос­тей. Ко­гда про­би­ло шесть ча­сов, у ме­ня бы­ла все­го лишь по­ло­ви­на не­об­хо­ди­мых мне дан­ных. По­это­му я вы­ну­ж­ден был по­зво­нить г-же Мил­ли­кен по те­ле­фо­ну и ска­зать, что уже в те­че­ние полуто­ра ча­сов на­блю­даю за ио­ном и дол­жен закон­чить ра­бо­ту. Я про­сил ее обе­дать без ме­ня. Позд­нее гос­ти осы­па­ли ме­ня ком­пли­мен­та­ми по по­во­ду мое­го при­стра­стия к до­маш­не­му хо­зяйству, по­то­му что, как они объ­яс­ня­ли, г-жа Мил­ли­кен со­об­щи­ла им, что я в те­че­ние по­лутора ча­сов сти­рал и гла­дил и дол­жен был за­кон­чить ра­бо­ту”(англ. “watch an ion”- на­блю­дать за ио­ном; “washed and ironed” - сти­рал и гла­дил).

Мил­ли­кен опуб­ли­ко­вал ре­зуль­та­ты сво­их опы­тов осе­нью 1910 го­да и ока­зал­ся в цен­тре вни­ма­ния фи­зи­ков все­го ми­ра. Не­мец­кая шко­ла, в том чис­ле и Рент­ген, от­крыв­ший за 15 лет до это­го икс - лу­чи, пол­но­стью из­ме­ни­ла свою точ­ку зре­ния. Пред­ста­ви­тель этой шко­лы, ве­ликий уче­ный в об­лас­ти фи­зи­че­ской хи­мии Ост­вальд в 1912 го­ду пи­сал: “Те­перь я убеж­ден . По­лу­чен­ные опыт­ным пу­тем до­ка­за­тель­ст­ва . ко­то­рые лю­ди без­ус­пеш­но ис­ка­ли в те­чение со­тен и ты­сяч лет . те­перь . да­ют воз­можность да­же са­мо­му ос­то­рож­но­му уче­но­му го­во­рить о том, что тео­рия атом­но­го строе­ния ве­ще­ст­ва экс­пе­ри­мен­таль­но до­ка­за­на”.

Ре­во­лю­ция в об­лас­ти све­та

В пе­ри­од с 1921 по 1945 гг. Мил­ли­кен - ди­рек­тор Ла­бо­ра­то­рии Нор­ма­на Брид­жа Ка­ли­фор­ний­ско­го тех­но­ло­ги­че­ско­го ин­сти­ту­та.

В 1921 го­ду Аль­берт Эйн­штейн был удо­стоен Но­бе­лев­ской пре­мии за раз­ра­бот­ку тео­рии, объ­яс­нив­шей фо­то­элек­три­че­ский эф­фект. Спус­тя два го­да Ро­берт Мил­ли­кен полу­чил Но­бе­лев­скую пре­мию за про­ве­де­ние опы­та, под­твер­див­ше­го тео­рию Эйн­штей­на. Тео­рия Эйн­штей­на бы­ла вы­дви­ну­та в 1905 го­ду. Ве­ликий экс­пе­ри­мент Мил­ли­ке­на был про­ве­ден поч­ти де­сять лет спус­тя. Двой­ное при­су­ж­де­ние пре­мии оз­на­ча­ло ус­пех од­ной из са­мых вели­ких ре­во­лю­ций в об­лас­ти фи­зи­ки.

Иса­ак Нью­тон обо­га­тил фи­зи­ку дву­мя тео­риями: пер­вая ка­са­лась за­ко­нов дви­же­ния тел; со­глас­но вто­рой свет пред­став­лял со­бой ско­пище кро­шеч­ных час­тиц све­тя­щей­ся ма­те­рии. Пер­вая тео­рия Нью­то­на при­нес­ла ему репута­цию ге­ни­аль­но­го уче­но­го. И толь­ко бла­го­да­ря его пре­сти­жу бы­ла при­ня­та вто­рая тео­рия - о кор­пус­ку­ляр­ной струк­ту­ре све­та, хо­тя она бы­ла зна­чи­тель­но сла­бее пер­вой и объ­яс­ня­ла все­го два из всех из­вест­ных свойств све­та.

По Нью­то­ну, от­ра­же­ние - это про­сто от­ска­ки­ва­ние уп­ру­гих час­тиц све­та от отра­жающей по­верх­но­сти. Реф­рак­ция же, прелом­ление све­то­вых лу­чей при пе­ре­хо­де из ме­нее плот­ной сре­ды, та­кой, на­при­мер, как воз­дух, в бо­лее плот­ную, как, на­при­мер, во­да, име­ло ме­сто в ре­зуль­та­те из­ме­не­ния ско­ро­сти частич­ки све­та в мо­мент про­хо­ж­де­ния ее сквозь по­верхность бо­лее плот­ной сре­ды. Нью­то­нов­ская тео­рия све­та не мог­ла объ­яс­нить интерферен­ции, ди­фрак­ции и по­ля­ри­за­ции.

К на­ча­лу XVIII сто­ле­тия ста­ла привле­кать вни­ма­ние вол­но­вая тео­рия све­та, выдви­нутая со­вре­мен­ни­ком Нью­то­на - Гюй­ген­сом. По этой тео­рии свет со­сто­ит из виб­ра­ции в эфи­ре. Ве­ли­кий фран­цуз­ский фи­зик Фре­нель ма­тематически до­ка­зал, что ес­ли свет действи­тельно вол­но­вое яв­ле­ние, то все его наблюда­емые про­яв­ле­ния лег­ко мож­но объ­яс­нить. Спус­тя пол­сто­ле­тия Джемс Мак­свелл под­кре­пил вол­но­вую тео­рию све­та, тео­ре­ти­че­ски до­ка­зав, что свет яв­ля­ет­ся виб­ра­ци­ей элек­три­че­ских и маг­нит­ных волн. До по­след­не­го де­ся­ти­ле­тия XIX ве­ка в тео­рии Мак­свел­ла не бы­ло, каза­лось, ни­ка­ких про­ти­во­ре­чий.


Страница: