Отправка сообщения в будущееРефераты >> Криптология >> Отправка сообщения в будущее
После, пользователь генерирует составной модуль
n = pq ,
как произведение двух простых случайно выбранных чисел pиq. После чего вычисляет
f(n) = (p-1) (q-1) и
e = 2t(mod f(n)).
Пара чисел (e, n) и будет являться открытым ключём пользователя.
Итак, данная схема представляет собой асимметричную систему с открытым ключом. Каждый из участников данной схемы имеет свой открытый и закрытый ключ, закрытые ключи агентов - их секреты, у пользователя количество закрытых ключей может равняться количеству агентов, так, чтобы понимать их сообщения или же пользователь должен иметь один универсальный закрытый ключ, который он смог бы применять для дешифрования всех получаемых им сообщений.
Таким образом обязанности агента заключаются в следующем:
Þ переодически раскрывать ранее секретное значение –получать новое значение хеш-функции. Обозначим за Sij,t секретное значение раскрываемое ij агентом в момент времени t. Последовательность секретов, раскрытых одним агентом, не зависит от последовательности секретов раскрытых другими агентами. Такая последовательность обладает следующим свойством : из каждого Sij,t΄ можно просто вычислить Sij,t для всех t΄ ≤ t .Секрет, раскрываемый агентом может быть использован для вычисления всех ранее раскрываемых секретов в силу следующего рекуррентного уравнения : Si,(t-1) = F ( Si,t ) (3), где f- некоторая односторонняя хеш-функция (Si,(t-1) –новый секрет, Si, t– старый, индекс (t-1) - означаетвремя которое осталось до раскрытия секрета, 1 применяемая в записи, условна и означает время, которое прошло с прошлого раскрытия секрета до текущего момента времени) Поскольку функция Fявляется односторонней, раскрытие Si,tне позволяет раскрыть прошлые секреты Si,t. (В противном случае злоумышленник мог бы вычислить последовательность секретов по формуле (3), начиная с некоторой точки в будущем, или выбрать функцию F с “лазейкой”, так чтобы только он смог вычислить Si,t- секретный ключ агента из Si,(t-1) ). Каждый раскрытый секрет агент должен подписать на своём секретном ключе. Новый, полученый секрет объявляется открытым и используется для общения агента с пользователем то есть, чтобы пользователь мог удостовериться в личности агента .
Þ дешифровать, на своём секретном ключе, сообщение пользователя вида (y, t, (e, n)) зашифрованные на открытом ключе агента, где y- любое сообщение пользователя не содержащее никакой секретной информации.
Þ шифровать сообщение yна секрете Si,t,раскрываемого агентом в момент времени t. Таким образом имеем криптограмму E(Si,t ,y).
Þ сформировать сообщение вида :
m=( i, t, t˚ , E(Si,t ,y)),
где i - индекс агента, t– время раскрытия в будущем, t˚ - текущее время ( по
часам агента). Это сообщение шифруется на открытом ключе пользователя
(e, n) и подписывается на полученном секрете агента - Si,t˚ :
E( E( m , (e, n) ) , Si,t˚ ).
Выполнение неравенства t > t˚ не требуется, однако
рассматривается как норма.
· раскрыть подписаный секрет Si,tв момент времени t .
Сразу после шифровки “тени” основного ключа К агент должен раскрыть свой секрет – получить значение хеш-функции, проделать все полагающиеся манипуляции и объявить пользователю свой открытый ключ – раскрытый секрет Si,t, подписаный на своём секретном ключе. Изначально аргументом используемой хеш-функции является секретный ключ агента. Таким образом агент уже выполнил свои обязанности один раз и схема должна сработать. Как видно по построению, сколько раз или когда именно агент будет раскрывать свой секрет – не важно. Также нет никакой зависимости между количеством раскрытия секрета разными агентами. Вообще, агент может учавствовать во всей схеме два раза : первый – зашифровать “тень”, подписать новый секрет и т.д. ; второй – раскрыть свой секретный ключ в заданное время.
Столь простой набор функций допускает простую реализацию в виде устойчивого к вскрытию, секретного, компактного и надежного устройства. Роль пользователя в такой схеме осуществляет сервер, который контролирует все манипуляции агентов при раскрытии секрета. Сообщение у может либо заранее задаваться администратором, либо генерироваться самим сервером, так как никакой смысловой нагрузки не несёт, а служит для аутентификации агента. Как было сказано выше, каждый агент имеет свой секретный ключ, который раскрывается в момент времени t, этот ключ учавствует в схеме в нескольких случаях – когда шифруется “тень” основного ключа К, когда агент дешифрует сообщение пользователя , подписывает сообщение у и раскрываемый секрет. Новый раскрытый и подписанный секрет, учавствует в диалоге пользователя и агента, и является открытым для пользователя, чтобы пользователь мог дешифровать ответное сообщение.
Работоспособность такой схемы достигается за счет применения пороговой схемы разделения секрета, обладающей избыточностью и позволяющей восстанавливать сообщение в случае, когда некоторые агенты не в состоянии выполнять свои функции. Если в системе существует не менее θ агентов, сообщение с гарантией будет восстановлено в указанные сроки, в противном случае будет восстановлено в будущем.
Описанная схема использования доверенных агентов не “верифицируема” в том смысле, что по опубликованым данным невозможно заранее принять решение о восстановлении сообщения. Сообщение М может быть восстановлено только после раскрытия агентами своих секретов, дешифрования rj с целью получения yj для дальнейшего восстановления секретного ключа К и дешифрования С. Для
решения проблемы необходимо применять “верифицируемые” схемы разделения секрета.
Для уменьшения потока обращений к пользователю рекомендуется поступать таким образом : с самого начала, агенты формируют свои открытые и секретные ключи Di,tи Si,tсоответственно, где Di,t= f (Si,t). Для большей надёжности агенты всегда подписывают свои открытые и закрытые ключи. Агент делает доступным ключ Di,tдля пользователя. Тогда пользователь сам может проделать все необходимые манипуляции с сообщением yиспользуя вместо секретного ключа агента, подписаный агентом открытый ключ Di,t. Таким образом в обязанности агента будет входить :