Концепции современного естествознания
Рефераты >> Естествознание >> Концепции современного естествознания

34. Теория кварков. Планковская длина. Суперструны

Кварки — это гипотетические материальные объекты, их экспериментальное наблюдение пока невозможно, однако теоре­тические положения кварковой гипотезы оказались плодотворны­ми, а теория в целом эвристичной. Квар­ки представляют собой истинно элементарные частицы и поэто­му бесструктурны. Главная особенность кварков — дробный заряд. Кварки различаются спином, ароматом и цветом. Аромат кварка-это его особая физичес­кая характеристика. Для того чтобы учесть все известные адро­ны, необходимо было предположить существование шести ви­дов кварков, различающихся ароматом: u (up — верхний), d (down — нижний), s (strange — странный), c (charm — очарова­ние), b (beauty — прелесть) и t(top — верхний). Существует ус­тойчивое мнение, что кварков не должно быть больше. Считается, что каждый кварк имеет один из трех возмож­ных цветов, которые выбраны произвольно: красный, зеленый, синий. Цвет кварка, как и аромат, — условное название для определенной физической характеристики. Каждому кварку соответствует антикварк с противополож­ным цветом (антикрасный, антизеленый и антисиний). Кварки соединяются тройками, образуя барионы (нейтрон, протон), или парами, образуя мезоны. Антикварки, соединясь тройками, со­ответственно, образуют антибарионы. Мезон состоит из кварка и антикварка. Суммарный цвет объединившихся кварков или ан­тикварков, независимо от того, объединены три кварка (барионы), три антикварка (антибарионы) или кварк и антикварк (ме­зоны), должен быть белым или бесцветным. Белый цвет дает сумма красного, зеленого, синего или красного — антикрасного, синего — антисинего и т.п. Кварки объединяются между собой благодаря сильному взаи­модействию. Переносчиками сильного взаимодействия выступа­ют глюоны, которые как бы «склеивают» кварки между собой. Глюоны также имеют цвета, но в отличие от кварков их цвета смешанные, например красный — антисиний и т.п., т.е. глюон состоит из цвета и антицвета. Испускание или поглощение глюона меняет цвет кварка, но сохраняет аромат. Известно восемь типов глюонов.

35. Фундаментальные физические взаимодействия

Все известные современной науке силы сводятся к четырем типам взаимодействий, которые называются фундаментальными: гравитационное, электромагнитное, слабое и сильное. Теория гравитации И. Ньютона, ос­нову которой составляет закон всемирного тяготения, стала од­ной из составляющих классической механики. Закон всемирно­го тяготения гласит: между двумя телами существует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Силы гравитации — это силы притяжения. Гра­витационная сила действует на очень больших расстояниях, ее интенсивность с увеличением расстояния убывает, но не исчеза­ет полностью. Считается, что переносчиком гравитационного взаимодействия является гипотетическая частица гравитон. Электромагнитное взаимодействие. Первой единой теорией электромагнитного поля выступила концепция Дж. Максвелла. Электромагнитные взаимодействия суще­ствуют только между заряженными частицами: электрическое поле — между двумя покоящимися заряженными частицами, маг­нитное — между двумя движущимися заряженными частицами. Электромагнитные силы могут быть как силами притяжения, так и силами отталкивания. Одноименно заряженные частицы оттал­киваются, разноименно — притягиваются. Переносчиками этого типа взаимодействия являются фотоны. В результате слабых взаимодействий нейтроны, входящие в состав атомного ядра, распадаются на три типа частиц: положительно заряженные протоны, отрицательно заряженные электроны и нейтральные нейтрино. Переносчиками слабого взаимодей­ствия являются бозоны. Сильное взаимодействие удерживает протоны в ядре атома, не позволяя им разле­теться под действием электромагнитных сил отталкивания. Сильное взаимодействие ответственно за образование атомных ядер, в нем участвуют только тяжелые частицы: протоны и нейтроны. Ядерные взаимодействия не зависят от заряда частиц, перенос­чиками этого типа взаимодействий являются глюоны. Примером сильного взаимодействия выступают термоядерные реакции на Солнце и других звездах. Принцип сильного взаимо­действия использован при создании водородного оружия.

36. Теория Объединения. Физическая симметрия. Супергравитация.

Принцип симметрии - утверждает, что если пространство однородно, перенос системы как целого в пространстве не изменяет свойств системы. Если все направления в пространстве равнозначны, то принцип симметрии разрешает поворот системы как целого в пространстве. Принцип симметрии соблюдается, если изменить начало отсчета времени. В соответствии с принципом, можно произвести переход в другую систему отсчета, движущейся относительно данной системы с постоянной скоростью.

Каждый закон сохранения связан с какой-либо симметрией в окружающем мире. Из одно­родности пространства следует закон сохранения импульса, из однородности времени — закон сохранения энергии, а из изо­тропности пространства — закон сохранения момента импульса. Закон сохранения и превращения энергии утверждает, что энергия не исчезает и не появляется вновь, а лишь переходит из одной формы в другую. Закон сохранения импульса постулирует неизменность импульса замкнутой системы с течением времени. Закон сохранения момента импульса утверждает, что момент импульса замкнутой системы остается неизменным с течением времени. Законы сохранения являются следствием симметрии, т.е. инвариантности, неизменности структуры материальных объектов относительно преобразований, или изменения физи­ческих условий их существования. Законы сохранения энергии и импульса связаны с од­нородностью времени и пространства, закон сохранения момен­та импульса — с симметрией пространства относительно вра­щений. Законы сохранения зарядов связаны с симметрией относительно специальных преобразований волновых функций, описывающих частицы.

38. Специальная теория относительности

На смену классической физике, построенной на принципах механики И. Ньютона, пришла новая фундаментальная теория — специальная теория относительности А. Эйнштейна, которая гласит: любой процесс протекает одинаково в изолиро­ванной материальной системе, находящейся в состоянии прямо­линейного и равномерного движения, т.е. все инерциальные сис­темы отсчета равноправны между собой. Таким образом было преодолено представление об эталонной абсолютной системе отсчета, которую связывали с эфиром, все системы отсчета были признаны равнозначными, не имеющими никаких преиму­ществ друг перед другом, а принцип относительности приобрел всеобщий, универсальный характер. Следствием такого понимания принципа относительности стало введение в физику понятия инвариантности. Инвариант­ность понимается как неизменность физических величин или свойств объектов при переходе от одной системы отсчета к дру­гой. Все законы природы неизменны при переходе от одной инерциальной системы к другой, т.е., находясь внутри инерци­альной системы, невозможно обнаружить, движется она или по­коится. А. Эйнштейн сформулировал также принцип инвариантнос­ти скорости света, который гласит: скорость света в вакууме не зависит от скорости движения источника света или наблюда­теля и одинакова во всех инерциальных системах отсчета. Ско­рость света является предельной скоростью распространения материальных взаимодействий и равна 300 000 км/с.


Страница: