Самоорганизация процессов в биологии, экологии, геологии
Рефераты >> Естествознание >> Самоорганизация процессов в биологии, экологии, геологии

В свете изложенного выясняется общая картина рождения Зем­ли. Рост Земли начался с объединения металлических частиц при температурах ниже точки Кюри. Однако нагрев первоначального металлического тела вследствие ударов частиц при аккумуляции привела повышению температур и, возможно, устранил взаимо­действие магнитных сил, которое было основным. Достигнув зна­чительной массы, первичное металлическое ядро—зародыш про­должало гравитационный захват более поздних конденсатов из окружающей среды. На этом этапе аккумуляция стала более го­могенной, и первичная мантия накапливалась как мощная оболоч­ка в виде смеси металлических, силикатных частиц и троилита. При этом весьма вероятно, что в нижних горизонтах первичной мантии содержание металлических частиц было повышенным, а в верхних горизонтах они отсутствовали. Таким образом, первона­чальная мантия по радиусу представляла собой неоднородную смесь металлического и силикатного материала. На поздних стадиях аккумуляции оседали гидратированные силикаты и органические вещества. На завершающих эта­пах аккумуляции Земля путем прямого гравитационного захвата приобрела также часть (вероятно, небольшую) газов, в том числе Н2О, СО2, СО, NН3, Hg, из первичной туманности в силу соб­ственного притяжения.

В связи с адиабатическим сжа­тием, радиоактивным нагревом от ныне сохранившихся и быстро вымерших радиоактивных изотопов (244Pu, 247Cm и 129I) и остаточной тепловой энергии от про­цесса аккумуляции в ранние эпо­хи существования Земли происхо­дило повышение температур и материал планеты местами начал плавиться. Максимальная темпе­ратура была приурочена к центру с последующим ее понижением к периферии. Плавление в результате радиоактивного нагрева и других факторов началось на определенных глубинах, где темпе­ратура превысила точку плавле­ния наиболее легкоплавких ком­понентов при данных условиях давления. Если состав первичной мантии представлял собой смесь силикатной, металлической и сульфидной фаз, то температура плавления эвтектики Fe—FeS была самой минимальной (1260 К) и в то же время она в меньшей степени зависела от уве­личения давления. Первым и принципиально нового веществ могло происходить в большей ча­сти объема первичной мантии. Совершенно очевидно, что жидкая расплавленная фаза металла с примесью серы возникала в глубоких недрах планеты легче, чем жидкие расплавленные силикатные массы.

Дифференциация гомогенной модели Земли с плавлением и погружением жидкого железа, сформировавшего ядро Земли, должна была существенно поднять температуру планеты. При полном погружении железа температура должна была повысить­ся на 2270 К, при этом в масштабе всей Земли выделилась бы энергия, равная 15*1030 Дж, по расчетам Г. Юри—4,78*1030 Дж, а Е. Люстиха—16,7*1030 Дж. Это громадное количество тепла должно было расплавить всю нашу планету или же ее большую часть. Однако никаких признаков такого события мы не находим. По гетерогенной модели аккумуляции Земли этого не происходи­ло. Стекание железосернистых масс, охватившее лишь нижние горизонты мантии, привело к сравнительно небольшому выделе­нию общего тепла. В отношении оценки времени не будет большой ошибкой допустить, что образование современного ядра Земли (внешнего железосернистого) произошло в интервале 4,6-4 млрд. лет назад.

Таким образом, по предложенной модели основная масса ядра образовалась в период формирования Земли за счет аккумуляции металлических частиц, а последующее выплавление железосернистых масс в нижних частях первичной мантии завершило формирование всего ядра Земли в целом.

3.2. Дифференциация мантии и образование коры, гидросферы и атмосферы.

В свете современных геохимических и космохимических дан­ных дифференциация первичной мантии имела двухстороннюю направленность. С одной стороны, происходило выплавление наи­более легкоплавких, но тяжелых компонентов—железосернистых масс с опусканием их к центру ввиду высокой плотности и низ­кой вязкости, что привело к формированию внешнего ядра. С дру­гой стороны, выплавлялись менее легкоплавкие, но обогащенные летучими силикатные фракции, что привело к образованию ба­зальтовой магмы и впоследствии к формированию базальтовой коры океанического типа. Если первый (первый также и в хроно­логическом отношении) процесс приводил к извлечению из пер­вичной мантии преимущественно сидерофильных и халькофильных химических элементов и их сосредоточению в центральном ядре, то второй—к центробежной миграции преимущественно литофильных и атмофильных элементов.

Однако геохимические свойства элементов в зависимости от конкретных физико-химических условий могут меняться. О сте­пени химической дифференциации мантии в какой-то мере мож­но судить, сравнивая относительную распространенность некото­рых элементов верхней мантии и различного типа хондритов. Так, например, отношение Ni: Fe в современной мантии составляет около 0,03, т. е. оно значительно ниже, чем в хондритовых метео­ритах, но выше, чем в метеоритных силикатах. Это можно объ­яснить тем, что на ранней стадии развития Земли большая часть никеля была удалена из мантии путем сегрегации сульфида и металла в ядро. Сравнение относительного распространения шес­ти типичных литофильных элементов верхней мантии Земли с их метеоритным распространением, согласно расчетам Р. Хатчисона, представлено в табл. 1.

Из табл. 1 видно, что фракционирование литофильных эле­ментов в мантии Земли отличается от такого в хондритовых ме­теоритах. Наблюдается общая тенденция убывания концентрации первых пяти элементов от углистых хондритов до энстатитовых. Верхняя мантия Земли обогащена Al, Mg и Са и обеднена Ti и Сr относительно углистых хондритов. Обеднение верхней мантии Ti и Сr можно объяснить их удалением в былые времена в ядро в виде сульфидов. В связи с этим следует отметить, что в сильно восста­новленных энстатитовых хондритах весь Сr находится в добреелите, а 75% Ti—в троилите.[7]

Таблица 1.

Фракционирование литофильных элементов относительно углистых хондритов

Элемент

Верхняя мантия

свободная от

Современная верхняя

мантия

Хондриты

углистые

обычные

энстатитовые

Si

1,00

1,00

1,00

1,06

1,00

Ti

0,46

0,65

1,00

0,74

0,55

Al

1,06

1,05

1,00

0,71

0,55

Сг

0,47

0,58

1,00

0,82

0,77

Mg

1,29

1,23

1,00

0,90

0,74

Са

1,13

1,10

1,00

0,67

0,53


Страница: