Наследственные хромосомные стоматологические заболевания
План
Введение.
1. Хромосомы и хромосомные болезни.
2. Стоматологические проявления наследственных болезней и синдромов.
3. Заключение.
4. Список литературы.
Введение.
Одним из разделов наследственной патологии (соответствующие больные занимают почти 25 % коечного фонда всего мира) являются хромосомные болезни. К ним можно отнести группу болезней, вызываемых числовыми или структурными изменениями хромосом либо их сочетанием, что обнаруживается при специальном анализе ядер клеток — кариологическом исследовании.
Черепно- лицевые аномалии, в частности морфологические изменения в зубах, могут быть обусловлены хромосомными аберрациями, генной мутацией, а так же совместными действиями многих генов и факторов среды. такие мультифакторные заболевания являются распространенной группой наследственных заболеваний и врожденных пороков развития.
Различные симптомы и болезни, при которых поражается черепно- лицевая область, нередко ассоциируется с изменениями в других органах и системах организма. Следовательно, для современной диагностики, профилактики и лечения необходимо сотрудничество клиницистов различного профиля и генетиков. Стоматологу- педиатору, ортодонту очень важно знать стоматологические проявления наследственных болезней и синдромов. Раннее их выявление совместно с педиатором, генетиком необходимо для определения прогноза и выбора правильного метода лечения.
1. Хромосомы и хромосомные болезни.
У высших организмов связь поколений осуществляется через половые клетки. Клетка — единое целое, и все ее структурные и биохимические компоненты тесно взаимосвязаны между собой. Еще в начале нашего века было установлено, что клетка имеет высокоспециализированные структурные элементы, которые определяют наследственную преемственность свойств организма. Этими элементами являются хромосомы (от греческого слова «хромое» — красящийся), которые включают в себя единицы наследственной информации — гены. Таким образом, каждая клетка является хранителем наследственной информации. Клетка имеет цитоплазму и ядро. Функции хранения и передачи наследственной информации в основном связаны с хромосомами клеточного ядра. Информация, содержащаяся в хромосомах оплодотворенного яйца, во время индивидуального развития должна быть передана всем клеткам тела. Передача информации от материнской клетки дочерним осуществляется во время клеточного деления при активном участии ядра и цитоплазмы. Специфическое значение в точном распределении хромосом между дочерними клетками принадлежит центросоме и митотическому аппарату клетки.
Для каждого биологического вида характерно постоянное число хромосом. У большинства высших организмов каждая клетка содержит диплоидный (2п) хромосомный набор. Хромосомы отличаются друг от друга формой и размерами. Совокупность количественных и качественных признаков хромосом, определяемая при микроскопировании в единичной клетке, называется кариотипом.
Нормальное диплоидное число хромосом у человека равно 46. Из-за несовершенства цитологической техники общее число хромосом у человека долго (с 1912 по 1956 г.) считали равным 48. В 1956 г. шведские цитологи J. H. Tijo и A. Levan применив усовершенствованную цитологическую методику, на материале культуры фибро-бластов легочной ткани 4 человеческих эмбрионов показали, что модельное число хромосом у человека равно 46. Эти данные в том же году были подтверждены английскими цитологами С. Е. Ford и J. L. Hamerton (1956). Эти два сообщения стали началом бурного развития цитогенетики человека.
Среди многих методов изучения наследственной патологии цитогенетический метод занимает важное место. С его помощью можно провести анализ материальных основ наследственности и кариотипа человека в норме и при патологии, изучить некоторые закономерности мутационного и эволюционного процессов. Все хромосомные болезни у человека были открыты этим методом. Он незаменим для дифференциальной диагностики многих врожденных и наследственных болезней. Овладеть им в условиях клинической лаборатории с соответствующей аппаратурой и реактивами несложно.
Кариотип человека определяется 46 хромосомами. Это число хромосом содержится в соматических клетках, половые клетки имеют набор в 2 раза меньший — 23 хромосомы. Из 46 хромосом человека 22 пары одинаковы у мужчин и женщин, их называют аутосомами. Они имеют порядковый номер от 1-го (самая крупная с центромерой в середине) до 22-го (самая маленькая с центромерой у края). В 23-й паре имеется отчетливая половая дифференцировка: в клетках тела у женщин находятся две крупные вполне идентичные друг другу хромосомы X, у мужчин имеется только одна хромосома X, а ее партнером служит маленькая хромосома У. Хромосомы Х и У называют половыми хромосомами.
При цитогентическом исследовании для того, чтобы ответить на вопрос, нормален ли хромосомный набор или имеется какая-либо аномалия, существенное значение приобретает правильный отбор метафазных пластинок. Для этого необходимы следующие условия: цельность метафазной пластинки; отсутствие или небольшое число взаимных наложений хромосом, средняя степень их конденсации (спирализации); обособленность метафазных пластинок друг от друга. Соблюдение этих правил позволяет в целом провести правильную идентификацию хромосом. Хромосомный анализ проводят в несколько этапов: визуальный анализ хромосомных препаратов; анализ хромосом с помощью зарисовки; анализ хромосом с помощью фотосъемки и раскладки кариотипа. Данные цитогенетических исследований заносят в специальные бланки — протоколы.
Из всех 23 пар хромосом с помощью рутинного метода можно идентифицировать только хромосомы 1; 2; 3;16 и У. Остальные хромосомы трудно различимы. Именно невозможность идентификации каждой хромосомы с помощью рутинного метода существенно ограничивала цитогенетическую диагностику и классификацию хромосомных болезней. Только с освоением новых методических подходов к изучению хромосом удалось, наконец, решить этот вопрос.
Линейная исчерченность хромосом выявляется после воздействия на них некоторых солевых растворов со строго заданным значением рН и определенным температурным режимом и с последующей окраской флюоресцирующими (Q-окраска) или основными красителями типа раствора Гимзы (G- и С-окраска). Помимо указанных способов окраски хромосом, применяют и другие специфические методы, которые позволяют избирательно окрашивать участки тех или иных хромосомных районов.
Наиболее информативным из них является метод С-окраски, который позволяет выявлять плотнокрасящи-еся сегменты, расположенные в центромерных или около-центромерных участках всех хромосом, а также в коротких плечах хромосом 13—15; 21—22 и в длинном плече хромосомы Y. С помощью этого метода обнаруживается так называемый структурный гетерохроматин. Значение метода С-окраски состоит в том, что он, выявляя структурный гетерохроматин во всех хромосомах, позволяет лучше, чем какой-либо другой метод, оценивать хромосомный полиморфизм у человека, т. е. межиндивидуальные различия по отдельным хромосомам. Для полиморфизма хромосом человека характерны наличие определенного варианта строения хромосомы во всех клетках, его передача от родителей к детям как простого моногенного признака, отсутствие заметного фенотипического эффекта. Уже твердо установлено, что истинный полиморфизм хромосом обусловлен вариабельностью в размерах их гетерохроматиновых районов.