Литьё цветных металлов в металлические формы - кокили
Рефераты >> Металлургия >> Литьё цветных металлов в металлические формы - кокили

Подпись: Рис. 2.10. Кокиль с расчленением стенки:
а — поперечным; б — продольным; в — вставка в кокиль; 1 — вставки; 2 — корпус
Для повышения стойкости кокилей используют сменные встав­ки 1, оформляющие рабочую полость кокиля (рис. 2.10, в). Благо­даря зазорам между корпусом 2 и вставкой 1 термическая деформация вставки протекает свободно, возникающие в ней напряже­ния снижаются, стойкость кокиля возрастает. Наиболее эффек­тивно использование сменных вставок в многоместных кокилях.

Технологические методы направлены на повышение стойкости поверхностного слоя рабочей полости, имеющего наибольшую температуру при работе кокиля. Для этого использу­ют армирование, поверхностное легирование, алитирование, силицирование, термическую обработку различных видов, наплавку, напыление на рабочую поверхность материалов, повышающих стойкость кокиля. Каждый из этих способов предназначен для повышения стойкости кокиля к разрушениям определенного вида.

Подпись: Рис. 2.11. Зависимость температуры кокиля от темпа работы Эксплуатационные методы повышения стойкости кокилей основаны на строгой регламентации температурного режима кокиля, зависящего от температуры кокиля перед заливкой, температуры заливаемого металла, состава, свойств и состояния огнеупорного покрытия на его рабочей поверхности, темпа (часто­ты заливок) работы кокиля. Перед заливкой кокиль нагревают или охлаждают (если он был нагрет) до оптимальной для данного сплава и отливки температуры TФ (см. табл. 2.4). Начальная тем­пература Тф кокиля зависит от темпа работы кокиля (рис. 2.11). При повышении темпа работы сокращается продолжительность tц цикла, в основном вследствие уменьшения времени t3an от выбивки отливки из кокиля до следующей заливки. Это приводит к тому, что в момент заливки кокиль имеет температуру несколько выше требуемой (рис. 2.11, а), С увеличением Ц кокиля уменьшается разность температур АГФ — Тюл — Тф и соответственно уменьшают­ся остаточные напряжения в кокилях из упруго-пластических мате­риалов. Вместе с тем повышение Гф способствует интенсификации коррозии, структурных превращений и других процессов в мате­риале кокиля, что снижает его стойкость.

При уменьшении темпа работы (рис. 2.11,6) продолжитель­ность цикла возрастает также из-за увеличения времени t3an. Это приведет к тому, что перед очередной заливкой температура Т'ф будет ниже заданной, соответственно возрастет разность температур АГФ и увеличатся остаточные напряжения в кокиле, его стойкость понизится. Производственные данные показывают (рис. 2.12), что для данного конкретного кокиля существует опти­мальный темп работы т, при котором стойкость его &зал наиболь­шая.

На стойкость кокиля оказывает влияние температура заливае­мого металла Гзал. Повышение температуры металла выше требуе­мой по технологии для данной отливки приводит к снижению стойкости кокиля и ухудшению качества отливки — усадочным раковинам, рыхлотам, трещинам.

Подпись: Рис. 2.12. Зависимость стойкости k ко¬киля от темпа ра.боты m Стойкость кокиля может быть повышена при надлежащем уходе за ним при эксплуатации. Это обеспечивается системой планово-предупредительного ремонта (ППР).

ТЕХНОЛОГИЯ ЛИТЬЯ В КОКИЛЬ

Технологические режимы литья

Почти всегда, за исключением особых случаев, требуемое качество отливки достигается при условии, если литейная форма заполнена расплавом без неспаев, газовых и неметаллических включений в отливке, а при затвердевании в отливке не образо­валось усадочных дефектов — раковин, пористости, трещин — и ее структура и механические свойства отвечают заданным. Из теории формирования отливки известно, что эти условия дости­жения качества во многом зависят от того, насколько данный технологический прооцесс обеспечивает выполнение одного из общих принципов получения качественной отливки — ее направ­ленное затвердеание и питание. Направленное затвердевание и питание усадки отливки обеспечивается комплексом мероприя­тий: рациональной конструкцией отливки, ее расположением в форме, конструкцией ЛПС, технологическими режимами литья, конструкцией и свойствами материала формы и т. д., назначаемых технологом с учетом свойств сплава и особенностей взаимодейст­вия формы с расплавом. Напомним, что при литье в кокиль главная из этих особенностей — высокая интенсивность охлаждения рас­плава и отливки. Это затрудняет заполнение формы расплавом, ускоряет охлаждение его в форме, что не всегда благоприятно влияет на качество отливок, особенно чугунных.

Интенсивность теплового взаимодействия между кокилем и расплавом или отливкой возможно регулировать в широких пре­делах. Обычно это достигается созданием определенного терми­ческого сопротивления на границе контакта отливки 1 (рас­плав) — рабочая поверхность полости кокиля 2 (рис. 2.13). Для этого на поверхности полости кокиля наносят слой 3 огнеупорной облицовки и краски (табл. 2.3). Благодаря меньшей по сравнению с металлом кокиля теплопроводности λкр огнеупорного покрытия между отливкой и кокилем возникает термическое сопротивление переносу теплоты:

,

где - коэффициент тепловой проводимости огнеупорного покры­тия- — толщина слоя огнеупорного покрытия.

Подпись: Рис. 2.13. Схема распределения температур в системе отливка—кокильОгнеупорное покрытие уменьшает скорость q отвода теплоты от расплава и отливки, зависящую от тепловой проводимости огнеупорного покрытия и разности между температурой поверх­ности отливки и температуры поверхности кокиля:

.

Величины и λкр возможно изменять в самых широких пределах, регулируя коэффициент теп­ловой проводимости огнеупорного покрытия и соответственно скорость охлаждения отливки, а следовательно, ее структуру, плотность, механические свойства.

Таблица 2.3

Составы огнеупорных покрытий (красок) кокилем

Назначение

Компоненты

Содержание, мас.%

Коэффициент теплопро­водности, Вт/ (.ч -К)

Для отливок из алюми- ниевых сплавок

1 Окись цинка

15

0,41

 

Асбест прокаленный (пудра)

5

 
       
 

Жидкое стекло

3

 
 

Вода

77

 
 

2. * Асбест прокаленный

8.7

0,27

 

Мел молотый

17,5

 
 

Жидкое стекло

3,5

 
 

Вода

70,3

 

Для отливок id магние-

3. Тальк

18

0,39

вых сплавок

Борная кислота

2,5

 
 

Жидкое стекло

2,5

 
 

Вода

77

 

Для отливок из чугуна

4. Пылевидный кварц

10— 15

0,58

 

Жидкое стекло

3 - 5

 
 

Вода

87—80

 
 

5. * Молотый шамот

40

0,25

 

Жидкое стекло

6

 
 

Вода

54

 
 

Марганцевокйслый ка-

   
 

лий 0,05 % (сверх 100 %)

   

Для отливок из стали

6. Огнеупорная составляю-

30 —40

0,3

 

щая (циркон, карбооунд,

   
 

окись хрома)

   
 

Жидкое стекло

5 - 9

 
 

Борная кислота

0,7—0,8

 
 

Вода

Остальное до плотно-

сти 1,1-1,22 г/см3

 


Страница: