Ядерный реакторРефераты >> Военная кафедра >> Ядерный реактор
ЯДЕРНЫЙ РЕАКТОР, устройство, в котором осуществляется управляемая ядерная цепная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен в декабре 1942 в США под руководством Э. Ферми. В Европе первый ядерный реактор пущен в декабре 1946 в Москве под руководством П. В. Курчатова. Составными частями любого ядерного реактора являются: активная лона с ядерным топливом, обычно окружённая отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиан, защита, система дистанционного управления. Основной характеристикой ядерного реактора является его мощность. Мощность в 1 Мвт соответствует цепной реакции, в которой происходит 3*1016 актов деления в 1 сек.
В активной зоне ядерного реактора находится ядерное топливо, протекает цепная реакция ядерного деления и выделяется энергия. Состояние ядерного реактора характеризуется эффективным коэффициентом Кэф размножения нейтронов или реактивностью r:
r = (Кэф - 1)/Кэф.
Если Кэф > 1, то цепная реакция нарастает во времени, ядерный реактор находится в надкритичном состоянии и его реактивность ρ > 0; если Кэф < 1, то реакция затухает, реактор - подкритичен, р < 0; при Кэф = 1, р = 0 реактор находится в критическом состоянии, идёт стационарный процесс и число делений постоянно во времени. Для инициирования цепной реакции при пуске ядерного реактора в активную зону обычно вносят источник нейтронов (смесь Ra и Be, 252Cf и др.), хотя это и не обязательно, т. к. спонтанное деление ядер урана и космические лучи дают достаточное число начальных нейтронов для развития цепной реакции при Кэф > 1.
В качестве делящегося вещества в большинстве Ядерный реактор применяют 235U. Если активная зона, кроме ядерного топлива (природный или обогащённый уран), содержит замедлитель нейтронов (графит, вода и др. вещества, содержащие лёгкие ядра), то основная часть делений происходит под действием тепловых нейтронов (тепловой реактор). В ядерном реакторе на тепловых нейтронах может быть использован природный уран, не обогащённый 235U (такими были первые ядерные реакторы). Если замедлителя в активной зоне нет, то основная часть делении вызывается быстрыми нейтронами с энергией ξ > 10 кэв (быстрый реактор). Возможны также реакторы на промежуточных нейтронах с энергией 1 - 1000 эв.
По конструкции ядерные реакторы делятся на гетерогенные реакторы, в которых ядерное топливо распределено в активной зоне дискретно в виде блоков, между которыми находится замедлитель нейтронов; и гомогенные, реакторы, в которых ядерное топливо и замедлитель представляют однородную смесь (раствор или суспензия). Блоки с ядерным топливом в гетерогенном ядерном реакторе, называются тепловыделяющими элементами (ТВЭЛ'ами), образуют правильную решётку; объём, приходящийся на один ТВЭЛ, называют ячейкой. По характеру использования Ядерный реактор делятся на энергетические реакторы и исследовательские реакторы. Часто один ядерный реактор выполняет несколько функций.
Выгорание и воспроизводство ядерного топлива.
В процессе работы ядерного реактора происходит изменение состава топлива, связанное с накоплением в нём осколков деления и с образованием трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называют отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных). Отравление обусловлено главным образом 135Xe, который обладает наибольшим сечением поглощения нейтронов (2,6*106 барн). Период его полураспада T1/2= 9,2 ч, выход при делении составляет 6-7% . Основная часть 135Хе образуется в результате распада 135I (T1/2 = 6,8 ч). При отравлении Кэф изменяется на 1-3% . Большое сечение поглощения 135Xe и наличие промежуточного изотопа 135I приводят к двум важным явлениям:
1) к увеличению концентрации 135Хе и, следовательно, к уменьшению реактивности ядерного реактора после его остановки или снижения мощности («йодная яма»). Это вынуждает иметь дополнительный запас реактивности в органах регулирования либо делает невозможным кратковременные остановки и колебания мощности. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5*1013 нейтрон/см2*сек продолжительность йодной ямы ~ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135Хе.
2) Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а значит — и мощности ядерного реактора. Эти колебания возникают при Ф> 1013 нейтрон/см2*сек и больших размерах ядерного реактора. Периоды колебаний ~ 10 ч.
Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в ядерном реакторе на 1 т топлива. Для ядерных реакторов работающих на естественном уране, максимальное выгорание ~ 10 Гвт*сут/т (тяжеловодные ядерные реакторы). В ядерных реакторах со слабо обогащённым ураном (2 - 3% 235U) достигается выгорание ~ 20—30 Гвт*cyт/т. В ядерном реакторе на быстрых нейтронах - до 100 Гвт*сут/т. Выгорание 1 Гвт*сут/т соответствует сгоранию 0,1% ядерного топлива.
Управление ядерного реактора.
Для регулирования ядерного реактора важно, что часть нейтронов при делении вылетает из осколков с запаздыванием. Доля таких запаздывающих нейтронов невелика (0.68% для 235U, 0,22% для 239Pu). Время запаздывания Тзап от 0,2 до 55 сек. Если (Кэф - 1) £ n3/n0, то число делений в ядерном реакторе растёт (Кэф > 1) или падает (Кэф < 1), с характерным временем ~ Tз. Без запаздывающих нейтронов эти времена были бы на несколько порядков меньше, что сильно усложнило бы управление ядерным реактором.
Для управления ядерного реактора служит система управления и защиты (СУЗ). Органы СУЗ делятся на: аварийные, уменьшающие реактивность (вводящие в ядерный реактор отрицательную реактивность) при появлении аварийных сигналов; автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (а значит - и мощность); компенсирующие (компенсация отравления, выгорания, температурных эффектов). В большинстве случаев это стержни, вводимые в активную зону ядерного реактора (сверху или снизу) из веществ, сильно поглощающих нейтроны (Cd, B и др.). Их движение управляется механизмами, срабатывающими по сигналу приборов, чувствительных к величине нейтронного потока. Для компенсации выгорания могут использоваться выгорающие поглотители, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы), или растворы поглощающего вещества в замедлителе. Стабильности работы ядерного реактора способствует отрицательный температурный коэффициент реактивности (с ростом температуры r уменьшается). Если этот коэффициент положителен, то работа органов СУЗ существенно усложняется.
Ядерный реактор оснащается системой приборов, информирующих оператора о состоянии ядерного реактора: о потоке нейтронов в разных точках активной зоны, расходе и температуре теплоносителя, уровне ионизирующего излучения в различных частях ядерного реактора и в вспомогательных помещениях, о положении органов СУЗ и др. Информация, получаемая с этих приборов, поступает в ЭВМ, которая может либо выдавать её оператору в обработанном виде (функции учёта), либо на основании математической обработки. Этой информации выдавать рекомендации оператору о необходимых изменениях в режиме работы ядерного реактора (машина - советчик), либо, наконец, осуществлять управление ядерного реактора без участия оператора (управляющая машина).