Иммунная система
Рефераты >> Медицина >> Иммунная система

Глава IV. Генетически запрограммированная смерть клетки

А. “Жизнь или смерть?”

Организмы разных людей имеют более или менее одинаковое число клеток. Как поддерживается такое постоянство? Одна группа механизмов достаточно очевидна. Клетка может разделиться на две дочерние, а может и не делиться. Какая из этих возможностей реализуется, зависит как от генетической программы, так и от внешних сигналов, которые клетка получает от своих соседей или из окружающей среды. Но существует и другой механизм, привлекший внимание ученых лишь в последние годы. Оказывается, есть особая генетическая программа, реализация которой при определенных условиях приводит клетку к гибели. Гибнет клетка не от руки какого-нибудь постороннего убийцы, она сама приносит себя в жертву во имя блага организма.

При формировании некоторых органов человека и животных первоначально возникает намного больше клеток, чем потом потребуется. Например, так бывает при развитии нервной системы. Лишние клетки в свое время мирно гибнут. Мирно - значит, без воспаления. Клетка сморщивается и постепенно распадается на обломки, которые обычно поедаются макрофагами, у которых хороший аппетит. Но как узнать, какая клетка лишняя, а какая нет?

Самопожертвование осуществляется при участии ряда факторов, многие из которых еще не известны. Схематически смертоносный сценарий можно разбить на несколько этапов. На первом этапе клетка получает “послание” о том, что она должна пожертвовать своей жизнью для благополучия организма. Это известие приходит либо от соседних клеток, либо от межклеточных веществ. Чтобы воспринять такое “послание”, клетки имеют специальные рецепторы (от латинского recipere - получать). Сигнальные молекулы и рецепторы подходят друг к другу, как ключ к замку.

Во втором действии драмы внутриклеточные регуляторы - посланники, получив важные инструкции, вносят поправки в работу отдельных генов. В конечном счете появляются или активируются ферменты, способные разрушать клеточные белки и нуклеиновые кислоты. В заключительном акте клетка теряет свою целостность и становится пищей для макрофагов. Морфологические и биохимические изменения в клетках - самоубийцах весьма схожи в разных органах и у разных организмов. Этот комплекс изменений, характерный для программируемой гибели клеток, часто обозначают термином а п о п т о з, что в переводе с греческого означает “опадание листьев” (рис. 17).

Программа, принимающая крайне ответственное (и иногда неправильное) решение - жить или не жить, - должна быть предельно осмотрительной, поэтому клетка старается сделать все, чтобы не ошибиться.

Анализ информации внутри клетки происходит при участии многих белков. В последнее время открыты белки как способствующие, так и препятствующие развитию апоптоза. Эти белки как бы напоминают штат нескольких инстанций судебных коллегий. Они могут либо одобрить смертный приговор, либо его отменить или приостановить исполнение. Мы не знаем, в чем конкретно заключается процесс принятия решения, но характер этого решения часто зависит от относительной концентрации определенных белков - регуляторов. Некоторые из этих белков - “ястребы” - обычно “голосуют” за смертный приговор. Другие - “голуби” - за помилование. В ряде случаев решение принимается простым большинством голосов.

Б. Апоптоз как средство профилактики

Интересно, что часть генов, контролирующих апоптозную реакцию у людей, являются очень древними. Некоторые белки одновременно “присматривают” и за апоптозом, и за делением клетки. Таким образом, системы регуляции клеточного деления и клеточной смерти оказываются тесно переплетенными между собой. Это обстоятельство имеет очень важные биологические последствия. Одно из них заключается в том, что апоптоз - мощное и важнейшее средство естественной профилактики раковых и других злокачественных новообразований.

Нарушение физиологического равновесия между делением и гибелью клеток лежит в основе и некоторых других - неопухолевых - заболеваний. В частности, есть основание считать, что при СПИДе (синдроме приобретенного иммунодефицита) уменьшение содержания в крови определенного класса лейкоцитов, играющих важную роль в иммунитете, обусловлено их апоптозной гибелью.

Большую роль играет апоптоз и в защите организма от возбудителей инфекционных заболеваний, в частности, от вирусов. Многие вирусы вызывают такие глубокие нарушения в обмене веществ зараженной клетки, что она воспринимает эти нарушения как сигнал к экстренному включению программы гибели. Биологический смысл такой реакции вполне понятен. Смерть зараженной клетки еще до того, как в ней образуется новое поколение вирусных частиц, предотвратит распространение инфекции по организму.

Воздействие на программу клеточной гибели - перспективное направление лекарственного лечения. Так, одна из важных задач противораковой терапии - стимуляция апоптозной системы. В других случаях задача врача, наоборот, предотвратить вредное для организма клеточное самоубийство. Следует признать, что наличие такого смертельного механизма - обстоятельство не только необходимое, но в конечном итоге и крайне благоприятное.

В. Как организм защищается от бактерий

Место проникновения бактерий в организм, называется входными воротами инфекции. Здесь на борьбу с бактериями поднимаются фагоцитирующие клетки. Первый сигнал мобилизации эти клетки получают от самих бактерий-агрессоров в виде молекул их токсинов. Одновременно с фагоцитозом бактерий макрофаги начинают синтезировать и выделять воспалительные цитокины - интерлейкин-1, фактор некроза опухолей и другие. Под влиянием цитокинов усиливается прилипание циркулирующих лейкоцитов к эндотелию сосудов и мобилизация в очаг инфекции. Те же цитокины усиливают антибактериальную активность фагоцитов. Если фагоцитирующие клетки не справляются с очищением очага инфекции от бактерий, интерлейкин-1 выполняет роль межклеточного сигнала. Он вовлекает в процесс активации Т-лимфоциты и включает механизмы специфического иммунного ответа.

Активированные Т-лимфоциты пополняют ресурсы воспалительных цитокинов, синтезируя гамма-интерферон, активирующий макрофаги. Существенную помощь фагоцитирующим клеткам в борьбе с бактериями оказывают продукты В-лимфоцитов - специфические антитела-иммуноглобулины (рис. 18). Взаимодействуя с антигенами бактерий, антитела как бы подготавливают бактерии в пищу фагоцитам, делают их более удобоваримыми. Кроме того, специфические антитела против бактериальных токсинов расправляются с последними самостоятельно: токсин, связавшийся со своими специфическими антителами, утрачивает токсичность и больше не представляет опасности для организма.

Г. Как организм защищается от вирусов

Встречаясь с вирусом в крови или в межклеточных пространствах, специфические антитела способны обезвредить этот вирус. Однако особенность вируса как паразита состоит в том, что он предпочитает внутриклеточный паразитизм, то есть жизнь и размножение исключительно внутри клеток хозяина и за их счет. Как в таких условиях бороться против вируса-паразита? Остается два пути: или атаковать и убивать зараженные вирусами клетки вместе с вирусами, или каким-то образом воспрепятствовать внутриклеточному размножению вирусов, если не удалось помешать внедрению вирусов во входных воротах. По первому пути идут разные типы цитотоксических клеток-киллеров, защищающие организм от вирусов. Распознав на поверхности зараженной клетки чужеродные антигены, клетки-киллеры впрыскивают в такую клетку-мишень содержимое своих цитоплазматических гранул (куда входит фактор некроза опухолей и другие молекулы, повреждающие клетку-мишень). Результатом атаки киллера, как правило, является гибель клетки-мишени вместе с внутриклеточными паразитами. Правда, гибель и разрушение собственных клеток организма не безразлично для его жизнедеятельности. При некоторых вирусных инфекциях такого рода защитные реакции приносят больше вреда, чем пользы.


Страница: