Заболевания надпочечников
При неклассической форме недостаточности этого фермента заболевание проявляется у детей в виде преждевременного пубертата, а у женщин в виде гирсутизма или олигоменореи, что часто трактуется как яичниковая гиперандрогения.
Дефект 17a-гидроксилазы или Р450с17. Как правило, недостаточность этого фермента сочетается с недостаточностью 17,20-лиазы. Это также сравнительно редкая патология биосинтеза кортикостероидов, при которой основные нарушения проявляются в образовании кортизола и других 17-гидроксикортикостероидов, а также эстрогенов и андрогенов. Выявлен аутосомно-рецессивный тип наследования. Биосинтез кортикостероидов сдвигается в сторону избыточного образования минералокортикостероидов, в основном дезоксикортикостерона, уровень которого в сыворотке крови может быть в 30-40 раз выше, чем в норме. Это приводит к задержке натрия в организме, гипокалиемическому алкалозу и артериальной гипертензии. Развивающаяся вследствие этого гиперволемия угнетает высвобождение ренина и соответственно ангиотензина, в связи с чем секреция альдостерона снижена и часто его уровень в сыворотке крови не определяется. В некоторых случаях может иметь место селективная недостаточность 17,20-лиазы, что сопровождается у таких больных нормальным содержанием кортизола и дезоксикортикостерона в сыворотке крови, при сниженном уровне гормонов надпочечника и половых желез. Недостаточность секреции эстрогенов, андрогенов при комбинированной недостаточности обоих ферментов приводит у женщин к первичной аменорее, недоразвитию вторичных половых признаков, а у мужчин – к псевдогермафродитизму и гинекомастии.
Дефект 21-гидроксилазы или Р450с21. Наиболее частая причина врожденной гиперплазии надпочечников. Как и предыдущая патология, характеризуется аутосомно-рецессивным типом наследования. Типично для этого нарушения избыточное образование 17a-гидроксипрогестерона и выделение его метаболита прегнантриола с мочой. При сольтеряющем синдроме выявляются низкое содержание натрия и высокий уровень калия в сыворотке крови. Повышено выделение натрия с мочой. Для подтверждения недостаточности 21-гидроксилазы необходимо определение концентрации 17-гидроксипрогестерона в плазме, которая, как правило, превышает в несколько раз уровень, наблюдаемый у здоровых новорожденных (от 100 до 700 нмоль/л при норме 50-60 нмоль/л). В связи с низкой секрецией альдостерона юкстагломерулярный аппарат почек гипертрофирован, а уровень ренина и ангиотензина в крови повышен.
Дефект 11b-гидроксилазы или Р450с11. Нарушается образование кортизола и вследствие избыточной секреции АКТГ биосинтез кортикостероидов осуществляется по пути образования андрогенов, что сопровождается вирилизацией. Образование избытка 11-дезоксикортикостерона и 11-дезоксикортизола приводит к развитию гипертензии. Отмечается избыточная экскреция с мочой тетрагидропроизводных 11-дезоксикортикостерона и 11-дезоксикортизола, а также прегнантриола и этиохоланолона. Наряду с вирилизацией у больных отмечается пигментация кожных покровов.
Дефект 18-гидроксилазы (кортикостерон метилоксидазы I – КМО I) и 18- оксидазы (кортикостерон метилоксидазы II -КМО-II). Проявляется в виде сольтеряющего синдрома и гипотонии. При этом нарушается биосинтез альдостерона, уровень которого в сыворотке крови не определяется, а предшественники альдостерона – 11-дезоксикортикостерон и кортикостерон – обнаруживаются в избыточном количестве. В связи с нормальной продукцией кортизола и АКТГ при этой патологии не развивается гиперплазия коры надпочечников, чем эта патология отличается от перечисленных выше.
Мозговой слой надпочечника и симпатическая нервная система являются производными нервного гребешка, т.е. имеют нейроэктодермальное происхождение и служат местом образования катехоламинов, к которым относят дофамин, норадреналин и адреналин. Биосинтез этих низкомолекулярных веществ происходит в хромаффинных клетках мозгового слоя надпочечника, ЦНС и адренергических симпатических волокнах постганглионарных нейронов. Катехоламины являются нейротрансмиттерами, которые опосредуют функцию ЦНС и симпатической нервной системы, принимая основное участие в регуляции сердечно-сосудистой системы. Исходным продуктом для образования катехоламинов является тирозин, который с помощью ряда соединений превращается в адреналин (схема 34).
Схема 34. Синтез катехоламинов.
Вначале происходит гидроксилирование тирозина с образованием дигидроксифенилаланина (ДОФА). Он является предшественником катехоламинов, не обладает биологической активностью, но легко проникает через гематоэнцефалический барьер. Образование ДОФА происходит при участии фермента тирозингидроксилазы (а), которая выявляется в мозговом слое надпочечника, ЦНС и тканях, иннервируемых симпатический нервной системой. Активность тирозингидроксилазы и гидроксилирование тирозина являются основным звеном в биосинтезе катехоламинов, лимитирующим его скорость.
Накопление фенилаланина и его метаболитов угнетает активность тирозингидроксилазы, поэтому при фенилкетонурии синтез катехоламинов снижен. Посредством ДОФА-декарбоксилазы (б) ДОФА превращается в дегидроксифенилэтиламин (дофамин), который при участии дофамин-b-оксидазы (в) и норадреналин-N-метилтрансферазы (г) превращается в норадреналин, а затем в адреналин.
Установлено, что гидроксилирование тирозина с образованием ДОФА происходит в митохондриях хромаффинных клеток. Декарбоксилирование ДОФА и образование дофамина осуществляется в цитозоле клетки, где в растворенном виде присутствуют ДОФА-декарбоксилаза и другие ферменты, необходимые для этого этапа биосинтеза катехоламинов. Дофамин попадает в гранулы клеток или терминали аксонов и в присутствии дофамин-b-оксидазы превращается в норадреналин. Далее норадреналин снова выходит в цитоплазму и, превратившись в адреналин, повторно поглощается гранулами.
Катехоламины в хромаффинных клетках локализуются в гранулах, которые служат резервуаром, местом их биосинтеза и высвобождения. Кроме катехоламинов, гранулы содержат липиды, нуклеотиды (АТФ), белки, ионы Са2+ и Mg2+. В гранулах мозгового слоя надпочечников содержится 80% адреналина и 20% норадреналина. Секреция катехоламинов осуществляется путем экзоцитоза; при этом содержание гранул “изливается” во внеклеточное пространство.
Гранулы выполняют следующие специфические функции: поглощают дофамин из цитозоля клетки и конвертируют его в норадреналин, являются местом “складирования” адреналина и норадреналина, предохраняют их от воздействия моноаминоксидазы и разрушения и в ответ на нервную стимуляцию высвобождают катехоламины в крови. При этом гранулы функционируют как тканевые буферные системы для катехоламинов; эту их функцию можно сравнить с функцией транспортных белков сыворотки крови для тироидных гормонов и кортикостероидов.
В окончаниях симпатических нервных волокон выявляются гранулы, содержащие лишь норадреналин. Аналогичные гранулы обнаружены и в ганглиях симпатической нервной системы. Норадреналин выявлен в головном и спинном мозге, наибольшая концентрация – в области гипоталамуса. Содержание адреналина в этих областях незначительно. Около 80% содержащегося здесь норадреналина локализуется в синаптосомах и нервных окончаниях. Следует отметить, что около 50% катехоламинов, содержащихся в области гипоталамуса и других базальных ганглиях головного мозга, приходится на дофамин.