Фотосинтез - проще простого
Рефераты >> Биология >> Фотосинтез - проще простого

Эвглена свободно передви­гается в воде при помощи жгутика. Такой способ пере­движения характерен как для ряда простейших животных, так и для некоторых ботани­ческих объектов, например зооспор отдельных видов во­дорослей. Эвглена содержит хлорофилл, поэтому при ин­тенсивном ее размножении во­да в лужах приобретает изум­рудно-зеленую окраску. На­личие хлорофилла позволяет ей питаться углекислым газом подобно всем зеленым расте­ниям. Однако, если водоросль перенести в воду, содержа­щую некоторые органические вещества, то она теряет зе­леную окраску и начинает, подобно животным, питаться готовыми органическими ве­ществами.

Эвглену все-таки нельзя назвать типичным животным, поэтому поищем других пред­ставителей. питающихся, по­добно растениям, при помощи хлорофилла.

Еще в середине XIX века немецкий зоолог Т. Зибольд обнаружил в телах пресновод­ной гидры и некоторых чер­вей хлорофилл. Позднее он был найден в организмах и других животных: гидроидных полипов, медуз, кораллов, гу­бок. коловраток, моллюсков. Выяснено, что некоторые мор­ские брюхоногие моллюски, пи­тающиеся сифоновыми во­дорослями, не переваривают хлоропласты этих растений, а длительное время содержат их в организме в функциональ­но-активном состоянии. Хло­ропласты сифоновых водорос­лей кодиума хрупкого и кодиума па­утинистого , попадая в организм моллюс­ков, не перевариваются, а ос­таются в нем.

Попытки освободить мол­люсков от хлоропластов, по­местив их в темноту на полто­ра месяца, оказались безус­пешными, равно как и выве­дение их из яиц. Бесхлоропластные личинки моллюсков погибали на ранней стадии развития.

Внутри животной клетки хлоропласты плотно упакова­ны и занимают значительный объем. Благодаря им моллюс­ки, не имеющие раковины, оказываются окрашенными в интенсивно зеленый цвет.

Почему же сифоновые водо­росли «полюбились» моллюс­кам? Дело в том. что в отли­чие от других зеленых водорос­лей они не имеют клеточного строения. Их крупное, часто причудливое по форме тела представляет собой одну ги­гантскую «клетку». Слово «клетка» я взял в кавычки не случайно. Хотя клеточные стенки в теле сифоновых водо­рослей отсутствуют, вряд ли можно назвать их одноклеточ­ными организмами, скорее это конгломерат не вполне разде­лившихся клеток. Подтвер­ждением тому служит нали­чие не одного, а множества клеточных ядер. Такое строе­ние назвали сифонным, а сами водоросли — сифоновыми. Отсутствие клеточных стенок, безусловно, облегчает процесс поглощения водоросли живот­ными клетками.

Ну а каковы хлоропласты этого растения? В теле водо­росли содержатся один или несколько хлоропластов. Если их много, они имеют дисковидную или веретеновидную форму. Одиночные обладают сетчатым строением. Ученые считают, что сетчатая струк­тура создается в результате соединения мелких хлороплас­тов друг с другом.

Многие ученые наблюдали усвоение углекислого газа хлоропластами, находящими­ся в животных клетках. У све­жесобранных моллюсков, эли­зии зеленой интенсивность фотосинтети­ческого усвоения углекислого газа составляла 55—67 % величины, определен­ной для неповрежденной водоросли кодиума хрупкого, из которого моллюсками были «приобретены» хлоропласты. Любопытно, что и содержание хлорофилла на 1 грамм сырой массы ткани у водоросли и животного было сходным.

Благодаря фотосинтезу мол­люски фиксировали углекис­лый газ на протяжении всех 93 дней опыта. Правда, ско­рость фотосинтеза постепенно ослабевала и к концу экспери­мента составляла 20—40 % от первоначальной.

В 1971 году ученые наблю­дали выделение кислорода в ходе фотосинтеза хлоро­пластов, налюдящихся в клет­ках тридакны. Тридакны—типичные обитатели тропических морей. Особенно широко они рас­пространены на коралловых рифах Индийского и Тихого океанов. Великаном среди моллюсков выглядит тридакна гигантская, достигающая иногда длины 1,4 метра и общей массы 200 килограммов. Тридакны интересны для нас своим сим­биозом с одноклеточными во­дорослями. Обычно они так располагаются на дне, чтобы их полупрозрачная мантия, выступающая между створка­ми раковины, была обращена вверх и сильно освещалась солнцем. В ее межклеточном пространстве в большом коли­честве поселяются зеленые водоросли. Несмотря на зна­чительные размеры, моллюск питается только теми вещест­вами, которые вырабатывают водоросли-симбионты.

В Средиземном море и у бе­регов Франции в Атлантике встречается червь конволюта, у которого под кожным покровом также оби­тают зеленые водоросли, осу­ществляющие синтез органи­ческих веществ из неоргани­ческих. Благодаря активности своих «квартирантов» червь не нуждается в дополнитель­ных источниках пиши, поэто­му желудочно-кишечный тракт у него атрофировался.

Во время отлива множество конволют покидает свои норы для того, чтобы принять сол­нечные ванны. В это время водоросли под их кожей ин­тенсивно фотосинтезируют. Некоторые виды этих червей находятся в полной зависи­мости от своих поселенцев. Так, если молодой червь не «заразится» водорослями, то погибнет от голода. В свою очередь водоросли, поселив­шиеся в теле конволюты, теряют способность к сущест­вованию вне его организма. «Заражение» происходит с по­мощью «свежих», не живших еще в симбиозе с червями водорослей в момент, когда личинки червя выходят из яиц. Эти водоросли, по всей вероятности, привлекаются какими-то веществами, выде­ляемыми яйцами червей.

В связи с рассмотрением вопроса функционирования хлоропластов в клетках жи­вотных чрезвычайно большой интерес представляют опыты американского биохимика М. Насса, в которых было по­казано, что хлоропласты си­фоновой водоросли каулерпы, харовой водоросли нителлы, шпината и африканской фиал­ки захватываются клетками соединительной ткани (так называемыми фибробластами) мышей. Обычно в фибробластах, заглотавших инородное тело (этот процесс ученые называют фагоцитозом), во­круг поглощенной частицы образуется вакуоль. Посте­пенно чужеродное тело пере­варивается и рассасывает­ся — исчезает. Когда же в клетки ввели хлоропласты, ва­куоли не возникали, а фибробласты даже не пытались их переварить.

Пластиды сохраняли свою структуру и способность к фотосинтезу на протяжении трех недель. Клетки, ставшие из-за их присутствия зелеными, нормально делились. При этом хлоропласты стихийно распределялись по дочерним клеткам. Пластиды, находив­шиеся в фибропластах около двух дней, а затем вновь выделенные, оставались непо­врежденными. Они усваивали углекислый газ с такой же скоростью, с какой фотосинтезировали свежие хлороплас­ты, выделенные из растений.

Предположим, что в ходе эволюции возникнут такие су­щества или их обнаружат на других планетах. Какими они должны быть? Ученые полагают, что в та­ком животном хлорофилл бу­дет сосредоточен в коже, куда свободно проникает свет, необходимый как для синтеза зеленого пигмента, так и для образования органических ве­ществ. «Зеленый человек» должен делать кое-что наобо­рот: днем, подобно сказочно­му королю, ходить в невиди­мой для всех одежде, а ночью, напротив, одеваться, чтобы согреться.

Проблема заключается в том, сможет ли такой орга­низм получать с помощью фотосинтеза достаточно пищи. Исходя из максимально воз­можной интенсивности фото­синтеза растений в самых благоприятных условиях су­ществования, можно подсчи­тать, сколько органического вещества сможет образовать зеленая кожа этого человека. Если принять, что 1 квадрат­ный дециметр зеленого расте­ния за 1 час синтезирует 20 миллиграммов Сахаров, то 170 квадратных дециметров человеческой кожи, доступной солнечным лучам, смогут об­разовать за это время 3,4 грамма. За 12-часовой день количество органического ве­щества составит 40,8 грамма. В этой массе будет концентри­роваться около 153 калорий энергии. Такого количества явно недостаточно для удов­летворения энергетических по­требностей человеческого ор­ганизма, которые составляют 2000—4000 калорий в сутки.


Страница: