Углеводы, жиры и белки - источники энергии для человека и животных
Рефераты >> Биология >> Углеводы, жиры и белки - источники энергии для человека и животных

Пр окислении глюкозы в пентозном (аэробном) цикле образуется вос­становленный никотинамид-адениннуклеотидфосфат, необходимый для вос­становительных синтезов. Кроме того промежуточные продукты этого цикла являются материалом для синтеза многих важных соединений.

Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. О состоянии углеводного обмена можно су­дить по содержанию сахара в крови (в норме 70-120 мг%). При сахарной на­грузке эта величина возрастает, но затем быстро достигает нормы. Наруше­ния углеводного обмена возникают при различных заболеваниях. Так, при недостатке инсулина наступает сахарный диабет, а понижение активности одного из ферментов углеводного обмена - мышечной фосфорилазы - ведет к мышечной дистрофии.

III. Жиры

1. Свойства липидов

Липиды представляют собой разнородную группу биоорганических со­единений, общим свойством которых является их нерастворимость в воде и хорошая растворимость в неполярных растворителях. К липидам относятся вещества с различным химическим строением. Большая их часть является сложными эфирами спиртов и жирных кислот. Последние могут быть как на­сыщенными, так и ненасыщенными. Наиболее часто в состав липидов входи­ит пальмитииновая, стереатиновая, олеиновая, линоливая и линоленовая кислоты. Спиртами обычно являются глицерин и сфингоцин, а также неторые другие вещества. В состав молекул сложных липидов могут входить и другие компоненты.

При присоединении остатка ортофосфорной кислоты образуются фос­фолипиды. Стероиды составляют совершенно особую группу липидов. Они построены на основе высокомолекулярного спирта - холестерола. В орга­низме липиды выполняют следующие функции: 1) строительную, 2) гормо­нальную, 3)энергетическую, 4) запасающую, 5) защитную, 6) участие в мета­болизме.

2. Свойства жиров

Жиры - органические соединения, представляющие собой сложные эфи­ры трехатомного спирта глицерина и высших или средних жирных кислот. Срдержится во всех животных и растительных тканях. Общую формулу жи­ров можно записать так:

О

a CH2 - O - C - R

О

b CH - O - C - R1

О

a' CH2 - O - C - R2

Все природные жиры - смесь глицеридов, не только симметричных, т.е. с тремя одинаковыми остатками жирных кислот, но и смешанных. Симметрич­ные глицериды встречаются чаще в растительных маслах. Животные жиры отличаются весьма разнообразным составом жирных кислот. Жирные кисло­ты, входящие в состав триглициридов, определяют их свойства. Триглици­риды способны вступать во все химические реакции, свойственные эфирам. Наибольшее значение имеет реакция омыления, в результате которой из триглицирида образуется глицерин и жирные кислоты.

O

CH2-O-C-R

O CH2OH

CH-O-C-R + 3 H2O = CHOH + 3 R COOH

O CH2OH жирная кислота

CH2-O-C-R глицерин

триглицирид

Омыление происходит как при гидролизе, так и при действии кислот или щелочей.

Жиры - питательное вещество, является обязательной составной частью сбалансированного пищевого рациона человека. Они - важный источник энергии, который можно рассматривать как природный пищевой концентрат большой энергетической ценности, способный в небольшом объеме обеспе­чить организм энергией. Средняя потребность жиров для человека - 80-100 г в сутки. Один грамм жиров при окислении дает 9,3 ккал. Жиры также являются растворителями витаминов A, D и E. Обеспеченность организма в этих вита­минах зависит от поступления жиров в составе пищи. С жирами в организм вводится комплекс биологически активных веществ, играющих важнейшую роль в нормальном жировом обмене.

3. Жировой обмен.

Жировой обмен представляет собой совокупность процессов превраще­ний жиров в организме. Обычно различают три стадии жирового обмена : 1) расщепление и всасывание жиров в желудочно-кишечном тракте; 2) превра­щение всосавшихся жиров в тканях организма; 3) выделение продуктов жиро­вого обмена из организма. Основная часть пищевых хиров подвергается пе­ревариванию в верхних отделах кишечника при участии фермента липазы, который выделяется поджелудочной железой и слизистой оболочкой желуд­ка. В результате расщепления образуется смесь жирных кислот, ди- и моног­лицеридов.

Процессу расщепления и всасывания жиров и других липидов способ­ствует выделение в кишечник желчных кислот, благодаря которым жиры пе­реходят в эмульгированное состояние. Часть жиров всасывается в кишечнике в нерасщепленном виде. Всосавшиеся жирные кислоты частично использу­ются в слизистой оболочке кишечника для ресинтеза триглицеридов и фос­фолипидов, а частично переходят в кровь системы воротной вены или в лим­фатические сосуды.

Количество нейтральных жиров и жирных кислот в крови непостоянно и зависит от поступления жиров с пищей и от скорости отложения жира в жировых депо. В тканях жиры расщепляются под действием различных липаз, а образовавшиеся жирные кислоты входят в состав других соединений (фосфолипиды, эфиры холестерина и т.д.) или окисляются до конечных про­дуктов. Окисление жирных кислот совершается несколькими путями. Часть жирных кислот при окислении в печени дает ацетоуксусную и b-оксимасля­ную кислоты, а также ацетон. При тяжелом сахарном диабете количество ацетоновых тел в крови резко увеличивается. Синтез жиров в тканях проис­ходит из продуктов жирового обмена, а также из продуктов углеводного и белкового обмена.

Нарушения жирового обмена обычно разделяют на следующие группы: 1) нарушения всасывания жира, его отложения и образования в жировой тка­ни; 2) избыточное накопление жира в органах и тканях, не относящихся к жировой ткани; 3) нарушения промежуточного жирового обмена; 4) наруше­ния перехода жиров из крови в ткани и их выделения.

IV. Белки

1. Свойства аминокислот

Особо важное место среди низкомолекулярных природных органических соединений принадлежит аминокислотам. Они являются производными кар­боновых кислот, где один из атомов водорода в углеводородном радикале кислоты замещен на аминогруппу, распологающуюся, как правило, по сосед­ству с карбоксильной группой. Многие аминокислоты являются предше­ственниками биологически акактивных соединений: гормонов, витаминов, алкалоидов, антибиотиков и др.

Подавляющее большинство аминокислот существует в организмах в свободном виде. Но несколько десятков из них находятся в преимущественно связанном состоянии, т.е. в соединении с другими органическими веществами: b-аланин, например, входит в состав ряда биологически активных соединений, а многие a-аминокислоты - в состав белков. Таких a-аминокислот насчитывается 18. В состав белков также входят два амида аминокислот - аспарагин и глутамин. Эти аминокислоты получили название белковых или протеиногенных. Именно они составляют важнейшую группу природных аминокислот, так как только им присуще одно замечательное свойство - способность при участии ферментов присоединяться по аминным и карбоксильным группам и образовывать полипептидные цепи.

Искуственно синтезированные w-аминокислоты служат сырьем для производства химических волокон.


Страница: