Старение на клеточном уровне
Рефераты >> Биология >> Старение на клеточном уровне

Существование специальных структур на концах хромосом было окончательно доказано в 1938 году классиками генетики, лауреатами Нобелевской премии Барбарой Мак-Клинток и Германом Мёллером. Независимо друг от друга они обнаружили, что фрагментация хромосом (под действием рентгеновского облучения) и появление у них дополнительных концов ведут к хромосомным перестройкам и деградации хромосом. В сохранности оставались лишь области хромосом, прилегающие к их естественным концам. Лишенные концевых теломер, хромосомы начинают сливаться с большой частотой, что ведет к тяжелым генетическим аномалиям. Следовательно, заключили они, естественные концы линейных хромосом защищены специальными структурами. Г. Мёллер предложил называть их теломерами (от греч. телос — конец и мерос — часть).

В последующие годы выяснилось, что теломеры не только предотвращают деградацию и слияние хромосом (и тем самым поддерживают целостность генома хозяйской клетки), но и, по-видимому, ответственны за прикрепление хромосом к специальной внутриядерной структуре (своеобразному скелету клеточного ядра), называемой ядерным матриксом (рис. 1,2). Таким образом, теломеры играют важную роль в создании специфической архитектуры и внутренней упорядоченности клеточного ядра. Более того, наличие на концах хромосом специальной теломерной ДНК позволяет решить так называемую проблему концевой недорепликации ДНК.

Теломерная ДНК (рис. 3,4) попала в поле зрения молекулярных биологов сравнительно недавно, когда были разработаны эффективные методы определения последовательности нуклеотидов в нуклеиновых кислотах. Первыми объектами исследования были одноклеточные простейшие (ресничная инфузория тетрахимена, в частности), поскольку из-за особенностей строения ядерного и хромосомного аппарата они содержат несколько десятков тысяч очень мелких хромосом и, следовательно, множество теломер в одной клетке (для сравнения: у высших эукариот на клетку приходится менее ста теломер).

Многократно повторяющиеся блоки в теломерной ДНК простейших состоят всего лишь из шести—восьми нуклеотидных остатков. При этом одна цепь ДНК сильно обогащена остатками гуаниловой кислоты (G-богатая цепь; у тетрахимены она построена из блоков TTGGGG (2 тимин- 4 гуанин)), а комплементарная ей цепь ДНК соответственно обогащена остатками цитидиловой кислоты (С-богатая цепь).

У дрожжей повторяющиеся блоки в теломерной ДНК заметно длиннее, чем у простейших, и зачастую не столь регулярные. Каково же было удивление ученых, когда оказалось, что теломерная ДНК человека построена из TTAGGG-блоков (2 тимин-аденин-3 гуанин), то есть отличается от простейших всего лишь одной буквой в повторе. Более того, из TTAGGG-блоков построены теломерные ДНК (вернее, их G-богатые цепи) всех млекопитающих, рептилий, амфибий, птиц и рыб. Столь же универсален теломерный ДНК-повтор у растений: не только у всех наземных растений, но даже у их весьма отдаленных родственников —морских водорослей он представлен последовательностью TTTAGGG (3 тимин-аденин-3 гуанин). Впрочем, удивляться здесь особенно нечему, так как в теломерной ДНК не закодировано никаких белков (она не содержит генов), а у всех организмов теломеры выполняют универсальные функции, речь о которых шла выше. Правда, из этого общего правила есть редкие исключения. Наиболее известное из них — теломерная ДНК плодовой мухи дрозофилы. Она представлена не короткими повторами, а ретротранспозонами — подвижными генетическими элементами.

Очень важная характеристика теломерных ДНК — их длина. У человека она колеблется от 2 до 20 тыс. пар оснований (т.п.о.), а у некоторых видов мышей может достигать сотен т.п.о.

Известно, что около теломер есть специальные белки, обеспечивающие их работу и участвующие в построении теломер. Доказано, что для нормального функционирования каждая линейная ДНК должна иметь две теломеры: по одной теломере на каждый конец.

Концевая недорепликация ДНК.

Известно, что ДНК-полимеразы, синтезируя дочернюю цепь ДНК, прочитывают родительскую цепь в направлении от ее 3'-конца к 5'-концу. Соответственно дочерняя цепь синтезируется в направлении 5' → 3'. В противоположном направлении синтез цепи ДНК фермент катализировать не может (рис. 5). Кроме того, ДНК-полимераза начинает синтез только со специального РНК-праймера — короткой РНК-затравки, комплементарной ДНК. После окончания синтеза ДНК РНК-праймеры удаляются, а пропуски в одной из дочерних цепей ДНК заполняются ДНК-полимеразой. Однако на 3'-конце ДНК такой пропуск заполнен быть не может, и поэтому 3'-концевые участки ДНК остаются однотяжевыми, а их 5'-концевые участки — недореплицированными. Отсюда ясно, что каждый раунд репликации хромосом будет приводить к их укорочению. Понятно, что прежде всего должна сокращаться длина теломерной ДНК.

Этим-то и объясняется «лимит Хейфлика», так как после того, как длина теломерной ДНК становится угрожающе низкой, наступает период кризиса — неспособности клетки к дальнейшему делению, а затем и её смерть. Хотя в культурах клеток in vitro клетки и погибают от укорочения теломер, но для клеток in vivo нормального организма это практически невозможно. Так, согласно недавним наблюдениям Озавы (см. Ozawa, T., Biosci. Rep. (1997) in press) 89% митохондриальной ДНК в митохондриях сердца 97-летнего старика содержали обширные делеции, критичные для репликации и транскрипции. Тем не менее, этот человек умер не от сердечной недостаточности, а от рака желудка. Нетрудно представить себе, что дальнейшее нарастание дисфункции митохондриальной ДНК всё же привело бы старика в недалёком будущем к смерти и это вряд ли имело отношение к укорочению ядерной ДНК.

Первым на проблему "концевой недорепликации ДНК" обратил внимание А.М. Оловников в 1971 году. Он высказал гипотезу о том, что потеря концевых последовательностей ДНК вследствие их недорепликации ведет к старению клетки. Предполагалось, что процесс укорочения теломер и есть тот часовой механизм, который определяет репликативный потенциал "смертной" клетки, и когда длина теломер становится угрожающе короткой, этот механизм предотвращает дальнейшее деление клетки. А.М. Оловников предположил также, что в нестареющих клетках (а к ним кроме раковых относятся зародышевые, стволовые и другие генеративные клетки) должна существовать специализированная ферментативная система, которая контролирует и поддерживает длину теломерной ДНК.

Гипотеза А.М. Оловникова нашла убедительное подтверждение в последующие годы. Во-первых, было установлено, что теломеры нормальных (то есть обреченных на старение) клеток действительно укорачиваются на 50-60 нуклеотидных звеньев при каждом клеточном делении. Во-вторых, в 1984 году Э. Блэкберн и Э. Грайдер выделили фермент, который с помощью механизма, отличного от механизма реакций, лежащих в основе репликации ДНК, синтезирует теломерную ДНК. Этот фермент был назван, теломеразой.

Как работает теломераза.

Итак, основное назначение теломеразы — синтезировать повторяющиеся сегменты ДНК, из которых состоит G-цепь теломерной ДНК. Таким образом, она относится к классу ДНК-полимераз, причем оказалось, что теломераза — это РНК-зависимая ДНК-полимераза или обратная транскриптаза. Ферменты этого класса, синтезирующие ДНК на РНК-матрицах, очень хорошо известны молекулярным биологам. Они закодированы и содержатся в ретровирусах (например, в вирусе иммунодефицита человека, вызывающем заболевание СПИДом) и служат для синтеза ДНК-копий их геномов, который в ретровирусе представлен РНК. В клеточном геноме обратные транскриптазы закодированы в ретротранспозонах.


Страница: