Биомеханика сердца и сосудов
Рефераты >> Медицина >> Биомеханика сердца и сосудов

Re = υДР/η ,

где υ - линейная скорость тока жидкости, Д - диаметр сосуда, Р - плотность жидкости, η - вязкость жидкости.

При артериосклерозе завихрение больше. Хорошо известно, что мелкие артерии и даже капилляры образуются гораздо реже. Это можно объяснить их малым диаметром. Согласно закону Лапласа, давление (Р) в полом сосуде равно отношению напряжения в его стенке (Т) к радиусу сосуда (r) (рис. 5). Таким образом, для кровеносных сосудов справедлива зависимость:

Р =T/r;

Т = Pr.

Это означает, что:

Повышение давления (Р) приводит к росту напряжения (Т).

Поскольку давление (Р) обратно пропорционально радиусу, более мелкие сосуды могут выдержать большее давление.

Рис. 5. Зависимость между давлением внутри сосуда (Р) и напряжением в его стенке (Т), то есть сила, предохраняющая его от разрыва (закон Лапласа)

Напряжение (Т) прямо пропорционально радиусу (r)(Т = P ∙ r): чем больше радиус, тем больше напряжение, и наоборот.

В соответствии с законом Лапласа мелкие сосуды, а также сосуды сердца небольших размеров способны выдержать большее давление, чем более крупные сосуды и вероятность их разрыва меньше.

В законе Лапласа речь идет о пассивном напряжении, т. е. напряжении, зависящем от структурных особенностей самого сосуда, таких, как количество эластических и коллагеновых волокон.

Активное напряжение связано с сокращением гладких мышц сосуда, приводящим к его сужению и уменьшению кровотока в нем. Если нервы, оканчивающиеся на этих мышцах, раздражать с возрастающей частотой, давление в сосудах будет увеличиваться, а кровоток падать.

Механизм возникновения шумов

Возникновение внутрисердечных шумов можно объяснить физическими закономерностями течения жидкости по трубке.

Для возникновения шума в трубке имеют значение следующие факторы: 1) изменение просвета трубки, в основном, сужение, реже - расширение; 2) скорость тока жидкости; 3) состав жидкости.

Если жидкость течет с определенной скоростью через трубку с одинаковым сечением, то протекать она будет бесшумно (рис. 6, а).

Рис. 6. Схема возникновения сердечных шумов: a - отсутствие шума, б - возникновение шума при сужении сосуда, в - возникновение шума при расширении сосуда, г - возникновение шума при сообщении сосудов

Если на ограниченном участке трубки имеется сужение и через нее пропустить жидкость с той же скоростью, то перед сужением и после него в трубке возникнут вихревые движения (рис. 6, б), которые и вызовут образование шума в этом месте. Такой шум наблюдается над склеротической бляшкой.

Если на ограниченном участке имеется расширение сосуда и через него пропустить жидкость с той же скоростью, то при движении из узкой в расширенную часть трубки возникнут вихревые потоки, которые и создадут условия для возникновения шума (рис. 6, в). Такой шум наблюдается при аневризме аорты и других сосудов.

Шум может также возникнуть если пропускать жидкость через трубки, которые имеют между собой сообщение (рис, 6, г). Такой шум наблюдается при незаращении баталова протока и при артерио-венозной аневризме. Кроме сужения просвета трубки, большое значение в возникновении шума имеет скорость тока жидкости: чем она больше, тем шум сильнее и наоборот.

Для возникновения шума имеют значение и свойства жидкости, в частности, ее вязкость.

Точно такие же условия могут возникнуть и при развитии патологических процессов на клапанах сердца (рис. 7).

В норме у здорового человека кровь из предсердий в желудочки во время диастолы течет беззвучно, так как атрио-вентрикулярные отверстия широки и через них свободно проходят два пальца.

Рис. 7. Механизм возникновения шумов при пороках сердца: а - недостаточность митрального клапана, б - митральный стеноз, в - сужение устья аорты, г - недостаточность клапанов аорты: ЛВ - легочная вена, ЛП - левое предсердие, ЛЖ - левый желудочек, А - аорта

Но если левое атрио-вентрикулярное отверстие становится узким (митральный стеноз) из-за сращения и склерозирования створок митрального клапана и кольца, к которому они прикреплены, то при прохождении крови через его узкое отверстие возникают вихревые движения крови, колебания створок клапана, что и ведет к образованию шума во время диастолы (см. рис. 7, б).

Шум может образоваться также при сужении устья аорты или легочной артерии, когда кровь при сокращении желудочков будет проходить в сосуды через суженное отверстие. Этот шум прослушивается во время систолы (см. рис. 7, в); при недостаточности митрального клапана (см. рис. 7, а); при недостаточности клапанов аорты (см. рис. 7, г) кровь, вследствие невозможности створок полностью закрыть аортальное отверстие, поступает частично обратно из аорты в левый желудочек во время диастолы, образуя при этом диастолический шум.

Работа сердца

Сердце выполняет работу, создавая давление и сообщая крови кинетическую энергию.

Работа любого желудочка может быть вычислена по следующей формуле:

W = QR + ½∙Qυ2/q,

где Q - выброс крови из желудочка за одно сокращение (мл); R - сопротивление кровотоку на выходное или среднее давление в аорте или легочной артерии; q - ускорение силы тяжести (9,8м/с2).

Для левого желудочка взрослого здорового человека характерны следующие данные: Q = 80 мл; R = 100 мл рт. ст. (или 1,36 М ∙ Н2О); υ = 0,5 м/с; работа равна 80 ∙ 1,36 + 1 /2(20/9,8) = 109 + 1 = 110 г-м (грамм-метр) за одно сокращение. При частоте сердцебиений 70 ударов в минуту, работа в минуту равна 7,7 кг∙м.

Поскольку каждый миллилитр кислорода (О2), используемый сердцем, эквивалентен примерно 2,06 кг∙м, работа левого желудочка за минуту, равная 7,7 кг∙м, эквивалентна примерно 3,7 мл кислорода.

В норме правый желудочек создает гораздо меньшее давление, поэтому его работа в минуту намного меньше; общая работа желудочков эквивалентна потреблению 4,5 мл О2. Общее потребление О2 сердцем значительно выше и составляет примерно 30 мл в минуту.

Отношение количества О2, эквивалентного произведенной механической работе, к общему количеству кислорода, использованному в течение минуты, отражает механическую эффективность сердца. В данном примере она равна 15%.

Работа левого желудочка, перекачивающего при среднем давлении 100 мм рт. ст. (135 г/см2) 5 л (5000 см3) крови в минуту, составляет: 5000 ∙ 135 = 675 000 г ∙ см = 6,75 кг∙м (за 1 мин).

Коэффициент полезного действия (КПД) сердца

КПД, равный отношению совершенной работы к затраченной энергии составляет всего 14-25%, что говорит о значительных потерях энергии.

При физической работе (нагрузке) и тренировке КПД сердца может увеличиваться. При повышении АД нагрузка на сердце становится больше, а КПД уменьшается. Поэтому для облегчения работы сердца желательно, чтобы кровяное давление было сравнительно низким, а сердечный выброс - большим.


Страница: