Черные дыры
Рефераты >> Астрономия >> Черные дыры

Существуют и другие модели, объясняющие результаты наблю­дений Лебедя Х-1 без привлечения черных дыр, но все они довольно искусственны. Черная дыра представляется единственным совер­шенно естественным объяснением наблюдений. Несмотря на это, Хокинг заключил пари с Кипом Торном из Калифорнийского технологи­ческого института, что на самом деле в Лебеде Х-1 нет черной дыры! Для него это пари — некая страховка. Он очень много занимался черными дырами, и вся его работа пойдет насмарку, если вдруг окажется, что черные дыры не существуют. Но в этом случае утеше­нием ему будет выигранное пари. Если же черные дыры все-таки существуют, то Кип будет целый год получать журнал „Penthouse". Заключая пари в 1975 г., они были на 80% уве­рены в том, что Лебедь Х-1 является черной дырой. Сейчас их уверенность возросла до 95%, но пари остается в силе.

Исследователи располагаем данными о еще нескольких черных дырах в системах типа Лебедя Х-1 в нашей Галактике и двух соседних галак­тиках, которые называются Большим и Малым Магеллановыми Облаками. Но черных дыр почти наверняка гораздо больше: на про­тяжении долгой истории Вселенной многие звезды должны были израсходовать до конца свое ядерное топливо и сколлапсировать. Число черных дыр вполне может даже превышать число видимых звезд, которое только в нашей Галактике составляет около ста ты­сяч миллионов. Дополнительное гравитационное притяжение столь большого количества черных дыр могло бы быть причиной того, почему наша Галактика вращается именно с такой скоростью, а не с какой-нибудь другой: массы видимых звезд для объяснения этой скорости недостаточно. Существуют и некоторые данные в пользу того, что в центре нашей Галактики есть черная дыра гораздо боль­шего размера с массой примерно в сто тысяч масс Солнца. Звез­ды, оказавшиеся в Галактике слишком близко к этой черной дыре, разлетаются на части из-за разницы гравитационных сил на ближ­ней и дальней сторонах звезды. Остатки разлетающихся звезд и газ, выброшенный другими звездами, будут падать по направлению к черной дыре. Как и в случае Лебедя Х-1, газ будет закручиваться по спирали внутрь и разогреваться, правда не так сильно. Разогрев будет недостаточным для испускания рентгеновского излучения, но им можно объяснить тот крошечный источник радиоволн и инфра­красных лучей, который наблюдается в центре Галактики.

Не исключено, что в центрах квазаров есть такие же черные дыры, но еще больших размеров, с массами около ста миллио­нов масс Солнца. Только падением вещества в такую сверхмассив­ную черную дыру можно было бы объяснить, откуда берется энер­гия мощнейшего излучения, которое исходит из черной дыры. Вещество падает, вращаясь, по спирали внутрь черной дыры и за­ставляет ее вращаться в том же направлении, в результате чего возникает магнитное поле, похожее на магнитное поле Земли. Падающее внутрь вещество будет рождать около черной дыры частицы очень высокой энергии. Магнитное поле будет настолько сильным, что сможет сфокусировать эти частицы в струи, которые будут вылетать наружу вдоль оси вращения черной дыры, т. е. в направлении ее северного и южного полюсов. У некоторых галак­тик и квазаров такие струи действительно наблюдаются.

Можно рассмотреть и возможность существования черных дыр с массами, меньшими массы Солнца. Такие черные дыры не могли бы образоваться в результате гравитационного коллапса, пото­му что их массы лежат ниже предела Чандрасекара: звезды с неболь­шой массой могут противостоять гравитации даже в том случае, если все их ядерное топливо уже израсходовано. Черные дыры ма­лой массы могут образоваться лишь при условии, что вещество сжато до огромных плотностей чрезвычайно высокими внешними давлениями. Такие условия могут выполняться в очень большой водородной бомбе: физик Джон Уилер как-то вычислил, что если взять всю тяжелую воду из всех океанов мира, то можно сделать водородную бомбу, в которой вещество так сильно сожмется, что в ее центре возникнет черная дыра. (Разумеется, вокруг не оста­нется никого, кто мог бы это увидеть!) Более реальная возмож­ность — это образование не очень массивных черных дыр с неболь­шой массой при высоких значениях температуры и давления на весьма ранней стадии развития Вселенной. Черные дыры могли об­разоваться лишь в том случае, если ранняя Вселенная не была идеально гладкой и однородной, потому что лишь какую-нибудь небольшую область с плотностью, превышающей среднюю плот­ность, можно так сжать, чтобы она превратилась в черную дыру. Но мы знаем, что во Вселенной должны были присутствовать неоднородности, иначе все вещество не сбилось бы в комки, обра­зуя звезды и галактики, а равномерно распределилось бы по всей Вселенной.

Могли ли эти неоднородности, существованием которых объ­ясняется возникновение звезд и галактик, привести к образованию «первичных» черных дыр, зависит от того, какой была ранняя Все­ленная. Следовательно, определив, какое количество «первичных» черных дыр сейчас существует, мы смогли бы многое узнать о самых ранних стадиях развития Вселенной. Первичные черные дыры, мас­са которых превышает тысячу миллионов тонн (масса большой го­ры), можно было бы зарегистрировать только по влиянию их гра­витационного поля на видимую материю или же на процесс расши­рения Вселенной. Но в следующей главе мы узнаем, что на самом деле черные дыры вовсе не черные: они светятся, как раскаленное тело, и чем меньше черная дыра, тем сильнее она светится. Как ни парадоксально, но может оказаться, что маленькие черные дыры проще регистрировать, чем большие!

2. Так ли черны чёрные дыры

До 1970 г. Стивен Хокинг в своих исследованиях по общей теории относи­тельности сосредоточивался в основном на вопросе о том, существо­вала или нет сингулярная точка большого взрыва. Тогда еще не было точного определения, какие точки пространства-времени лежат внутри черной дыры, а какие — снаружи. Но многие уже обсуждали определе­ние черной дыры как множества событий, из которого невозможно уйти на большое расстояние. Это определение стало сейчас обще­принятым. Оно означает, что границу черной дыры, горизонт со­бытий, образуют в пространстве-времени пути лучей света, которые не отклоняются к сингулярности, но и не могут выйти за пределы черной дыры и обречены вечно балансировать на самом краю. Это как если бы, убегая от полицейского, держаться на шаг впереди, не будучи в силах совсем оторваться от него.

Пути лучей света на горизонте событий ни­когда не смогут сблизиться. Если бы это произошло, то лучи в конце концов пересеклись бы. Как если бы наткнуться на кого-то другого, тоже убегающего от полицейского, но в противоположном направлении,— тогда оба будут пойманы. (Или же, в нашем случае, упадут в черную дыру.) Но если бы эти лучи света поглотила черная дыра, то они не могли бы лежать на границе черной дыры. Сле­довательно, на горизонте событий лучи света должны всегда дви­гаться параллельно друг другу, т. е. поодаль друг от друга. Иначе говоря, горизонт событий (граница черной дыры) подобен краю тени — тени грядущей гибели. Если посмотреть на тень, созда­ваемую каким-нибудь очень удаленным источником, например Солн­цем, то вы увидите, что на краю тени лучи света не приближаются друг к другу.


Страница: