Воздействие газообразных промышленных выбросов
Рефераты >> Экология >> Воздействие газообразных промышленных выбросов

Волокнистые фильтры, имеющие поры, равномерно рас­пределенные между тонкими волокнами, работают с высокой эф­фективностью; степень очистки h = 99,5¸99,9 % при скорости филь­труемого газа 0,15-1,0 м/с и DР=500¸1000 Па.

На фильтрах из стекловолокнистых материалов возможна очи­стка агрессивных газов при температуре до 275°С. Для тонкой очистки газов при повышенных температурах применяют фильт­ры из керамики, тонковолокнистой ваты из нержавеющей стали, обладающие высокой прочностью и устойчивостью к переменным нагрузкам; однако их гидравлическое сопротивление велико – 1000 Па.

Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость обо­рудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание филь­трующего материала пылью.

Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распро­страненным приемом заключительной стадии механической очист­ки, в особенности для газов, подлежащих охлаждению. В аппара­тах мокрой очистки применяют различные приемы развития по­верхности соприкосновения жидкости и газа.

Башни с насадкой (насадочные скрубберы) отличаются простотой конструкции и эксплуатации, устойчивостью в работе, малым гидравлическим сопротивлением (DР=300¸800 Па) и сравнительно малым расходом энергии. В насадочном скруббере возможна очистка газов с начальной запыленностью до 5-6 г/м3. Эффективность одной ступени очистки для пылей с d > 5 мкм не превышает 70-80%. Насадка быстро забивается пылью, особен­но при высокой начальной запыленности.

Орошаемые циклоны (центробежные скрубберы) при­меняют для очистки больших объемов газа. Они имеют сравни­тельно небольшое гидравлическое сопротивление – 400-850 Па. Для частиц размером 2-5 мкм степень очистки составляет ~50%. Центробежные скрубберы высокопроизводительны благодаря боль­шой скорости газа; во входном патрубке wг=18¸20 м/с, а в се­чении скруббера wг = 4¸5 м/с.

Пенные аппараты применяют для очистки газа от аэро­золей полидисперсного состава. Интенсивный пенный режим соз­дается на полках аппарата при линейной скорости газа в его пол­ном сечении 1-4 м/с. Пенные газоочистители обладают высокой производительностью по газу и сравнительно небольшим гидрав­лическим сопротивлением (DР одной полки около 600 Па). Для частиц с диаметром d >5 мкм эффективность их улавливания на одной полке аппарата 90-99%; при d < 5 мкм h = 75¸90%. Для повышения h устанавливают двух- и трехполочные аппараты.

Скрубберы Вентури (см. рис 1) — высокоинтенсив­ные газоочистительные аппараты, но работающие с большим расхо­дом энергии. Скорость газа в сужении трубы (горловине скруббе­ра) составляет 100—200 м/с, а в некоторых установках — до 1200 м/с. При такой скорости очищаемый газ разбивает на мель­чайшие капли завесу жидкости, впрыскиваемой по периметру тру­бы. Это приводит к интенсивному столкновению частиц аэрозоля с каплями и улавливанию частиц под действием сил инерции. Скруббер Вентури — универсальный малогабаритный аппарат, обеспечивающий улавливание тумана на 99—100%, частиц пыли с d = 0,01¸0,35 мкм — на 50–85% и частиц пыли с d = 0,5-2 мкм — на 97%. Для аэрозолей с d = 0,3-10 мкм эффек­тивность улавливания определяется в основном силами инерции и может быть оценена по формуле

где К – константа; L – объем жидкости, подаваемой в газ, дм3/м3;

Рис 1. Реактор полного смешения – скруббер Вентури:

1 – сопло;

2 – горловина;

3 – камера смешения;

4 – разделительная камера

j – инерционный параметр, отнесенный к скорости газа в горло­вине; при h ³ 90% j является однозначной функцией перепада давления в скруббере.

Главный дефект скруббера Вентури — большой расход энергии по преодолению высокого гидравлического сопротивления, кото­рое в зависимости от скорости газа в горловине может составлять 0,002-0,013 МПа. Помимо того, аппарат не отличается надежно­стью в эксплуатации, управление им сложное.

Основной недостаток всех методов мокрой очистки газов от аэрозолей — это образование больших объемов жидких отходов (шлама). Таким образом, если не предусмотрены замкнутая сис­тема водооборота и утилизация всех компонентов шлама, то мок­рые способы газоочистки по существу только переносят загрязни­тели из газовых выбросов в сточные воды, т. е. из атмосферы в водоемы.

Электростатическая очистка газов служит уни­версальным средством, пригодным для любых аэрозолей, вклю­чая туманы кислот, и при любых размерах частиц. Метод осно­ван на ионизации и зарядке частиц аэрозоля при прохождении газа через электрическое поле высокого напряжения, создаваемое коронирующими электродами. Осаждение частиц происходит на заземленных осадительных электродах. Промышленные электро­фильтры состоят из ряда заземленных пластин или труб, через которые пропускается очищаемый газ. Между осадительными электродами подвешены проволочные коронирующие электроды, к которым подводится напряжение 25–100 кВ. Теоретическое вы­ражение для степени улавливания аэрозолей в трубчатых элек­трофильтрах имеет вид

где и – скорость дрейфа частиц к электроду; l — длина электро­да; r — радиус осадительного электрода; wг — скорость очищае­мого газа.

На рис.2 приведены идеальные кривые зависимости степени улавливания аэрозолей в электрофильтре от размеров частиц. Кривые на этом рисунке отвечают разным значениям произведения рЕЕО , где р — коэффициент, для непроводящих частиц р = 1,5¸2, для проводящих частиц р=3; Е — напряженность электрического поля; eО – критическое значение напряженности поля. Фактичес­кая зависимость степени улавливания аэрозолей h от диаметра частиц d для промышленных электрофильтров определяется экс­периментально. Очистка осложнена прилипанием частиц к электро­ду, аномальным (пониженным) сопротивлением слоя пыли на электродах и др.

Рис 2. Кривые зависимости степени улавливания пыли в электрофильтре от размеров частиц:

1 – pEEo = 160;

2 – pEEo = 80;

3 – pEEo = 40;


Страница: