Обработка результатов эксперимента
Рефераты >> Статистика >> Обработка результатов эксперимента

Для построения гистограммы частостей на оси Ox откладываются частичные интервалы, на каждом из них строится прямоугольник, площадь которого равна частости данного частичного интервала. Если частости отнести к серединам частичных интервалов, то полученная замкнутая линия образует полигон частостей. На рисунке 1 изображена гистограмма и полигон частостей.

Значения эмпирической функции распределения выписаны в последней строке статистического ряда распределения частостей. Запишем значения эмпирической функции распределения в аналитическом виде:

0, если   x ≤ 18;

0,004, если 18 < x ≤ 19;

0,04, если 19 < x ≤ 20;

0,12, если 20 < x ≤ 21;

0,284, если 21 < x ≤ 22;

F*(x) = 0,508, если 22 < x ≤ 23;

0,748, если 23 < x ≤ 24;

0,9, если 24 < x ≤ 25;

0,964, если 25 < x ≤ 26;

0,992, если 26 < x ≤ 27;

1, если 27 < x ≤ 28;

1, если x ≥ 28;

График эмпирической функции изображен на рисунке 2.

В тех случаях, когда наблюдаемые значения случайной величины задаются многозначными числами и объем выборки достаточно велик (n > 25), вначале целесообразно найти среднюю арифметическую по формуле а за тем перейти к вычислению центральных моментов порядка k (k = 2, 3, 4):

Интервалы

наблюдаемых значений СВ Х, МПа

Середины интервалов xi

Частоты mi

[18;19)

18,5

1

-4,44

19,71

-87,53

388,63

[19;20)

19,5

9

-30,96

106,50

-366,37

1260,31

[20;21)

20,5

20

-48,80

119,07

-290,54

708,91

[21;22)

21,5

41

-59,04

85,02

-122,43

176,29

[22;23)

22,5

56

-24,64

10,84

-4,77

2,10

[23;24)

23,5

60

33,60

18,82

10,54

5,90

[24;25)

24,5

38

59,28

92,48

144,26

225,05

[25;26)

25,5

16

40,96

104,86

268,44

687,19

[26;27)

26,5

7

24,92

88,72

315,83

1124,34

[27;28]

27,5

2

9,12

41,59

189,64

864,75

Итого

250

0

687,61

57,07

5443,47

Следовательно,

Для предварительного выбора закона распределения вычислим вначале средние квадратические ошибки определения асимметрии


Страница: