Корреляционно-регрессионный анализ
Рефераты >> Статистика >> Корреляционно-регрессионный анализ

Значимость коэффициентов простой линейной регрессии (применительно к совокупностям, у которых n<30) осуществляют с помощью t-критерия Стьюдента. При этом вычисляют расчетные (фактические) значения t-критерия

для параметра a0 :

для параметра a1 :

где n - объём выборки;

- среднее квадратическое отклонение результативного признака от выравненных значений ŷ ;

или

- среднее квадратическое отклонение факторного признака x от общей средней .

Вычисленные по вышеприведенным формулам значения сравнивают с критическими t , которые определяют по таблице Стьюдента с учетом принятого уровня значимости α и числом степеней свободы вариации . В социально-экономических исследованиях уровень значимости α обычно принимают равным 0,05. Параметр признаётся значимым (существенным) при условии, если tрасч> tтабл . В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Теперь я рассчитаю t-критерий Стьюдента для моей модели регрессии.

- это средние квадратические отклонения.

Расчетные значения t-критерия Стьюдента:

По таблице распределения Стьюдента я нахожу критическое значение t-критерия для ν= 32-2 = 30 . Вероятность α я принимаю 0,05. tтабл равно 2,042. Так как, оба значения ta0 и ta1 больше tтабл , то оба параметра а0 и а1 признаются значимыми и отклоняется гипотеза о том, что каждый из этих параметров в действительности равен 0 , и лишь в силу случайных обстоятельств оказался равным проверяемой величине.

Проверка адекватности регрессионной модели может быть дополнена корреляционным анализом. Для этого необходимо определить тесноту корреляционной связи между переменными х и у. Теснота корреляционной связи, как и любой другой, может быть измерена эмпирическим корреляционным отношением ηэ , когда δ2 (межгрупповая дисперсия) характеризует отклонения групповых средних результативного признака от общей средней:.

Говоря о корреляционном отношении как о показателе измерения тесноты зависимости, следует отличать от эмпирического корреляционного отношения – теоретическое.

Теоретическое корреляционное отношение η представляет собой относительную величину, получающуюся в результате сравнения среднего квадратического отклонения выравненных значений результативного признака δ, то есть рассчитанных по уравнению регрессии, со средним квадратическим отношением эмпирических (фактических) значений результативности признака σ:

,

где ; .

Тогда .

Изменение значения η объясняется влиянием факторного признака.

В основе расчёта корреляционного отношения лежит правило сложения дисперсий, то есть , где - отражает вариацию у за счёт всех остальных факторов, кроме х , то есть являются остаточной дисперсией:

.

Тогда формула теоретического корреляционного отношения примет вид:

,

или .

Подкоренное выражение корреляционного выражения представляет собой коэффициент детерминации (мера определенности, причинности).

Коэффициент детерминации показывает долю вариации результативного признака под влиянием вариации признака-фактора.

Теоретическое корреляционное выражение применяется для измерения тесноты связи при линейной и криволинейной зависимостях между результативным и факторным признаком.

Как видно из вышеприведенных формул корреляционное отношение может находиться от 0 до 1. Чем ближе корреляционное отношение к 1, тем связь между признаками теснее.

Теоретическое корреляционное отношение применительно к моему анализу я рассчитаю двумя способами:

Полученное значение теоретического корреляционного отношения свидетельствует о возможном наличии среднестатистической связи между рассматриваемыми признаками. Коэффициент детерминации равен 0,62. Отсюда я заключаю, что 62% общей вариации работающих активов изучаемых банков обусловлено вариацией фактора – капитала банков (а 38% общей вариации нельзя объяснить изменением размера капитала).

Кроме того, при линейной форме уравнения применяется другой показатель тесноты связи – линейный коэффициент корреляции:

,

где n – число наблюдений.

Для практических вычислений при малом числе наблюдений (n≤20÷30) линейный коэффициент корреляции удобнее исчислять по следующей формуле:


Страница: