Проблемы кибирнетикиРефераты >> Кибернетика >> Проблемы кибирнетики
В наши дни, идущие научно-технического прогресса, автоматизация интеллектуальной деятельности становится насущной проблемой.
Согласно положению советского специалиста по кибернетике И.А.Полетаева мы вступаем в эпоху "пересечения кривых". Экстраполируя на обозримое будущее современные тенденции развития общества можно придти к парадоксальным результатам. Сейчас число лиц, занятых в сфере управления и обслуживания растет быстрее, чем число лиц, непосредственно занятых в производстве. Причем происходит это так быстро, что через некоторое время количество людей, занятых в непроизводственной сфере и, в частности, в науке будет близко к общей численности населения Земли.
4.Пути и фазы моделирования интеллекта
Стремительное увеличение потока перерабатываемой информации там, где раньше ее почти не было (торговля, банковское дело), также приведет к значительным изменениям в методах работы и потребует автоматизации, а возможно и интеллектуализации.
Под интеллектом будем понимать способность любого организма (или устройства) достигать некоторой измеримой степени успеха при поиске одной из многих возможных целей в обширном многообразии сред. Будем отличать знания от интеллекта, имея в виду, что знания - полезная информация, накопленная индивидуумом, а интеллект - это его способность предсказывать состояние внешней среды в сочетании с умением преобразовывать каждое предсказание в подходящую реакцию, ведущую к заданной цели. По-разному дается и определение искусственного интеллекта. Полагают, что о реализации искусственного интеллекта можно будет говорить лишь тогда, когда автомат начнет решать задачи, непосильные для человека, причем сделает это не в результате высокого быстродействия, а в результате применения нового найденного метода. Однако не все с этим согласны. В большинстве случаев на нынешнем начальном этапе исследований по искусственному интеллекту лишь соизмеримыми с результатами, полученными человеком, и не столь оригинальными.
Принято различать три основные пути моделирования интеллекта и мышления:- классический, или (как его теперь называют) биотический;
-эвристического программирования;
-эволюционного моделирования. Рассмотрим их в этой последовательности.
БИОНИЧЕСКОЕ МОДЕЛИРОВАНИЕ. Непосредственное моделирование человеческого мозга (т.е. моделирование каждой нервной клетки и связей между ними) с целью создания автоматов, обладающих интеллектом, чрезвычайно сложно. Мозг представляет собой самую сложную и лишь частично изученную структуру. Сложнейшее переплетение связей коры головного мозга практически не поддаются расшифровке. Известно лишь примерное расположение зон мозга, отвечающих за ту или иную функцию. В настоящее время не известен и принцип работы мозговых элементов нейронов, многочисленные связи которых имеют внешне хаотический характер. Попытки смоделировать работу головного мозга соединением между собой множества процессоров подобно нейронной сети, показали, что некоторое увеличение скорости и потока обрабатываемой информации идет лишь до уровня одного - двух десятков процессоров, а затем начинается резкий спад производительности. Процессоры как бы "теряются", перестают контролировать ситуацию или проводят большую часть времени в ожидании соседа. Некоторых успехов удалось добиться лишь в приборах, работающих в "двумерном варианте", т.е. обрабатывающих не последовательную, а параллельную информацию, например в системах распознаваниях образов. В них одна плоскость данных одновременно взаимодействует с другой, причем количество единиц информации может достигать нескольких миллионов. Таким образом происходит единовременный охват изучаемого объекта, а не последовательное изучение его частей.
ЭВРИСТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ. Второй подход к решению задачи искусственного интеллекта связан с эвристическим программированием и решает задачи, которые в общем можно назвать творческими.
Практичность этого метода заключается в радикальном уменьшении вариантов, необходимых при использовании метода проб и ошибок. Правда, всегда существует вероятность упустить наилучшее решение, так что говорят, что этот метод предлагает решения с некоторой вероятностью правильности.
Обычно используют два метода: метод анализа целей и средств и метод планирования. Первый заключается в выборе и осуществлении таких операций, которые последовательно уменьшают разницу между исходным и конечным состоянием задачи. Во втором методе вырабатывается упрощенная формулировка исходной задачи, которая также решается методом анализа целей и средств. Один из полученных вариантов дает решение исходной задачи[6].
ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ. Третий подход является попыткой смоделировать не то, что есть, а то, что могло бы быть, если бы эволюционный процесс направлялся в нужном направлении и оценивался предложенными критериями.
Идея эволюционного моделирования сводится к экспериментальной попытке заменить процесс моделирования человеческого интеллекта моделированием процесса его эволюции. При моделировании эволюции предполагается, что разумное поведение предусматривает сочетание способности предсказывать состояние внешней среды с умением подобрать реакцию на каждое предсказание, которое наиболее эффективно ведет к цели.
Этот метод открывает путь к автоматизации интеллекта и освобождению от рутинной работы. Это высвобождает время для проблемы выбора целей и выявления параметров среды, которые заслуживают исследования. Такой принцип может быть применен для использования в диагностике, управлении неизвестными объектами, в игровых ситуациях.
Итак, существуют три пути моделирования интеллекта: бионический, эвристический и эволюционный. В зависимости от использованных средств можно выделить три фазы в исследованиях. Первая фаза - создания устройств, выполняющих большое число логических операций с высоким быстродействием.
Вторая фаза включает разработку проблемно- ориентированных языков для использованного на оборудовании, созданном в первой фазе. Третья фаза наиболее выражена в эволюционном моделировании. В ходе развития этой фазы отпадает необходимость в точной формулировке постановки задачи, т.е. задачу можно сформулировать в терминах цели и допустимых затрат, а метод решения будет найден самостоятельно по этим двум параметрам.
Работы по искусственному интеллекту во многом тесно связаны с философской проблемой кибернетического моделирования. Эти работы часто связывают с построением точной копии человеческого мозга. Однако такой подход можно назвать "некибернетическим". Каковы же черты кибернетического метода мышления, какие вопросы вносит кибернетика в человеческое познание? В своей "Истории западной философии" Б.Рассел ставит вопрос о факторах, позволивших европейцам создать тип культуры, в котором ведущее место заняла наука. причину этого Рассел усматривает, как он выражается, в двух великих интеллектуальных изобретениях: изобретение дедуктивного метода древними греками (Эвклид) и изобретение экспериментального метода в эпоху возрождения (Галилей). Именно эти два интеллектуальных изобретения - дедуктивный метод (а тем самым математика) и эксперимент - позволили создать классическую науку. К этим двум основным интеллектуальным орудиям современное развитие познания добавляет третье - математическую модель и математическое моделирование. Соединение дедуктивных построений математики с данными, добытыми экспериментальным методом, создает естествознание, в центре которого стоит понятие научного закона. Совокупность законов - это основное содержание естествознания; их установление его основная задача.