Критерии принятия инвестиционных решений и методы оценки инвестиционных проектовРефераты >> Инвестиции >> Критерии принятия инвестиционных решений и методы оценки инвестиционных проектов
,
где r1 — значение табулированного коэффициента дисконтирования, при котором f(r1)>0 (f(r1)<0);
r2 — значение табулированного коэффициента дисконтирования, при котором f(r2)<О (f(r2)>0).
Точность вычислений обратно пропорциональна длине интервала (r1,r2), а наилучшая аппроксимация с использованием табулированных значений достигается в случае, когда длина интервала минимальна (равна 1%), т.е. r1 и r2 - ближайшие друг к другу значения коэффициента дисконтирования, удовлетворяющие условиям (в случае изменения знака функции с "+" на "-"):
r1 — значение табулированного коэффициента дисконтирования, минимизирующее положительное значение показателя NPV, т.е. f(r1)=minr{f(r)>0};
r2 — значение табулированного коэффициента дисконтирования, максимизирующее отрицательное значение показателя NPV, т.е. f(r2)=maxr{f(r)<0}.
Путем взаимной замены коэффициентов r1 и r2 аналогичные условия выписываются для ситуации, когда функция меняет знак с "-" на "+".
Пример B
Требуется рассчитать значение показателя IRR для проекта со сроком реализации 3 года: (в млн руб.) - 10, 3, 4, 7.
Возьмем два произвольных значения коэффициента дисконтирования: r = 10%, r = 20%. Соответствующие расчеты с использованием табулированных значений приведены в таблице 1.
Г. | Поток | Расчет 1 | Расчет 2 | Расчет 3 | Расчет 4 | ||||
r=10% | PV | r=20% | PV | r=16% | PV | r=17% | PV | ||
0 | -10 | 1,000 | -10,00 | 1,000 | -10,00 | 1,000 | -10,00 | 1,000 | -10,00 |
1 | 3 | 0,909 | 2,73 | 0,833 | 2,50 | ,862 | 2,59 | 0,855 | 2,57 |
2 | 4 | 0,826 | 3,30 | 0,694 | 2,78 | 0,743 | 2,97 | 0,731 | 2,92 |
3 | 7 | 0,751 | 5,26 | 0,579 | 4,05 | 0,641 | 4,49 | 0,624 | 4,37 |
1,29 | -0,67 | 0,05 | -0,14 |
Значение IRR вычисляется по формуле следующим образом:
1,29
IRR = 10% + ¾¾¾¾¾ (20% -10%) = 16,6%.
1,29-(-0,67)
Можно уточнить полученное значение. Допустим, что путем нескольких итераций мы определили ближайшие целые значения коэффициента дисконтирования, при которых NPV меняет знак: при r =16% NPV= +0,05; при r =17% NРV = -0,14. Тогда уточненное значение IRR будет равно:
0,05
IRR = 16% + ¾¾¾¾¾ (17% -16%) = 16,26%.
0,05-(-0,14)
Область применения и трудности IRR-метода.
При анализе условий применения IRR-метода в литературе выделяются два типа инвестиционных проектов: изолированно проводимые, или чистые инвестиции (pure investments), и смешанные (mixed investments).
Под чистыми инвестициями понимаются инвестиции, которые не требуют промежуточных капиталовложений, а полученные от реализации проекта средства направляются на амортизацию вложенного капитала и в доход. Нормальным признаком чистых инвестиций является характер динамики сальдо денежных потоков: до определенного момента времени только отрицательные сальдо (т.е. превышения расходов над доходами), а затем - только положительные сальдо (чистый доход), причем итоговое сальдо денежных потоков должно быть неотрицательным (т.е. проект должен быть номинально прибыльным).
Формальным признаком смешанных инвестиций является чередование положительных и отрицательных сальдо денежных потоков в ходе реализации проекта. Однозначное определение показателя IRR становится невозможным, а применение IRR-метода для анализа смешанных инвестиций - нецелесообразным. Эффективность смешанных инвестиций рассчитывается при помощи применения NPV-метода или одного из специальных методов расчета эффективности. Поэтому, говоря далее об IRR-методе, будет иметься в виду анализ только чистых инвестиций.
Для определения эффективности инвестиционного проекта при помощи расчета внутренней нормы рентабельности используется сравнение полученного значения с базовой ставкой процента, характеризующей эффективность альтернативного использования финансовых средств. Проект считается эффективным, если выполняется следующее неравенство: