Требования к геодезическому обоснованию вариометрической съёмки на примере Курской магнитной аномалии
Рефераты >> Геодезия >> Требования к геодезическому обоснованию вариометрической съёмки на примере Курской магнитной аномалии

рис. 3

1.3 Основное уравнение вариометра

Напишем уравнение равновесия: τ(θ – θ0)+MZ =0 где τ – крутильная жёсткость нити OO1, θ – θ0 – угол закручивания нити относительно положения равновесия коромысла в однородном поле MZ – момент внешних сил относительно оси z. Далее по известным формулам получаем основное уравнение гравитационного вариометра

τ(θ – θ0)=KWXYcos2α+K/2Wδsin2α+Lhm(WXYcosα-WXYsinα) (1.3.1)

Величина θ – измеренный угол поворота коромысла, α – заданное значение аргумента. Для определения неизвестных нужно выполнить наблюдения в пяти различных азимутах. Если уменьшить длину коромысла, то можно считать K≈0, тогда в основном уравнение останутся только три неизвестных - θ0, WYZ, WXZ так как произведение WYZ WXZ определяют градиент силы тяжести в горизонтальном направлении, то прибор, у которого выполнено условие K≈0 называют градиентометром рис. 4

рис. 4

Для сокращения времени наблюдения в вариометрах и градинтометрах устанавливают две крутильные системы.

1.4 Принципиальная схема вариометра

В практике гравиразведочных работ наиболее часто применяют вариометры ВГ-1. Вариометр ВГ-1 состоит из трёх основных частей: верхней, средней и нижней. Нижняя - массивная подставка, средняя содержит подъёмные винты, азимутальный круг и автоматическое устройство для поворота верхней части прибора из одного азимута в другой (рис. 5). В верхней – крутильная система и устройство для фотографирования. Оптическая схема вариометра ВГ-1 (рис.6).

Рис.5 Вариометр S-20 (ВГ-1) Рис. 6 Схема оптической 1- подставка, 2- коробка с системы вариометра ВГ-1 крутильной системой, 3- коробка с оптической системой, 4- верхняя часть, 5- средняя часть

Вариометр ВГ-1 имеет крутильную систему (S- образная). Наклонное коромысло 1 подвешено с помощью бифилярного подвеса 2 на вертикальной нити 3. Для фиксации поворота коромысла на нити 3 укреплена призма 4. Луч света от источника 5 проходит через конденсатор 6 и после отражения от двух неподвижных зеркал 7 и 8 попадает на призму 4. В зависимости от угла закручивания нити 3 луч света после отклонения в призме 4 будет попадать на разные участки зеркала 8. От зеркала 8 изображение передаётся на фотографическую пластинку 10. Чтобы изображения, полученные при установке коромысла в разных азимутах, не сливались, луч света попадает с зеркала 8 на подвижное зеркало 9, наклон которого автоматически изменяется при изменении азимута коромысла. На неподвижных зеркалах нанесены изображения линий (штрихи). На фотографической пластинке получаются изображения двух штрихов от неподвижных зеркал и блик, фиксирующий положение коромысла. Измерения на пластинке выполняются с помощью дополнительной масштабной шкалы (палетки). Во время измерений верхняя часть прибора устанавливается в нулевой азимут и находится в этом азимуте в течение успокоения коромысла (около 15 минут). Через 13 минут после установки нулевого азимута автоматическое контактное устройство, расположенное в средней части, включает осветитель. Через 2 минуты осветитель выключается и включается ведущий механизм, поворачивающий верхнюю часть прибора в следующий азимут. Поправки в наблюденные значения производных: изменения, вызванные притяжением рельефа и изменением силы тяжести в нормальном поле, учитываются в виде поправок. Поправка за рельеф учитывает влияние масс, расположенных выше и ниже уровенной поверхности точки наблюдения, на вторые производные. Для вычисления поправки за рельеф вокруг пункта наблюдений необходимо выполнить нивелирование в радиусе 50 метров с точностью до 1 см. Для уменьшения влияния рельефа при наблюдениях с вариометрами прибор устанавливают на ровных площадках или при необходимости искусственно выравнивают рельеф вблизи пункта наблюдений. [2]

1.5 Гравитационная градиентометрия на подвижном основании

Измерения градиентов силы тяжести на подвижном основании (автомашине, самолёте) позволяют ускорить локальные, региональные и глобальные исследования гравитационного поля Земли. Градиентометр, не связанный с Землёй, измеряет компоненты тензора V градиентов силы притяжения.

V=grad b= (1.5.1)

(1.5.2)

Главное различие в теории измерений на неподвижном основании и на подвижной, то что при измерении на подвижном основании нужно перейти от топоцентрической системы координат к инерциальной системе. Фирма «Белл» (Bell Aerospace-Textron, Буффало, Нью-Йорк) разработала систему для градиентометрической съёмки GGSS, предназначенную для работы на автомашине или самолёте. Основными частями системы являются три ортогональных гравитационных градиентометра, установленные с наклоном в 35° на трехосной гироплатформе для непрерывной ориентации в топоцентрической системе координат, связанной с гравитационным полем. Каждый градиентометр содержит две пары акселерометров фирмы Белл (расстояние 0,1 м), установленных ортогонально по краю диска (диаметр 0,2 м); их измерительные оси ориентированы по касательной к диску (рис. 7). Ускорение пробной массы, укрепленной на маятниковом подвесе, измеряется двумя кольцевыми емкостными датчиками, расположенными по обе стороны от этой массы. Выходной сигнал датчиков усиливается и преобразуется в ток. Ток подается в катушку для возвращения пробной массы в нулевое положение. рис. 7 Принцип вращающегося гравитационного градиентометра

Система фирмы Белл содержит также приёмоиндикатор спутниковой системы GPS, обеспечивающий в сочетании с акселерометрами и гироплатформой информацию о местоположении и ориентации, блок регистрации данных, компьютер и источник питания (рис. 9). Система с кондиционером предназначена для работы в автомобильном фургоне, который в свою очередь можно разместить в самолете (C-130) для измерений в воздухе.

рис. 9 Платформа геодезического гравитационного градиентометра (GGSS), установленная на стол Скорсби для лабораторных калибровок (фотография предоставлена фирмой «Белл» и геофизической лабораторией ВВС США).

При скорости движения 40 км/ч (автомобиль) или 400 км/ч (самолёт) выходная информация выдаётся соответственно с шагом 100 м. или 1 км.

1.6 Спутниковая градиентоментрия

В настоящее время разрабатываются гравитационные градиентометры, которые основаны на традиционных или сверхпроводящих устройствах и будут установлены на спутниках, планируемых на 1990-е гг. Спутники будут запущены на практически круговые полярные орбиты с высотами от 160 до 250 км. Полагают, что за 6 мес. работы средние значения аномалий силы тяжести (по трапециям 1° х 1° и 0,5° х 0,5°) при разрешении 100— 50 км будут получены с ошибкой ±20 — 50 мкм • с -2. Приведем примеры разработок, основанных на разных принципах


Страница: