Значение и роль фотосинтеза
Рефераты >> Ботаника и сельское хоз-во >> Значение и роль фотосинтеза

План:

1. Основной источник энергии.

2. История открытия фотосинтеза.

3. Лимитирующие факторы:

а) влияние интенсивности света.

б) влияние температуры.

в) влияние концентрации углекислоты. Понятие о компенсационном пункте.

4. Световая и темновая фазы фотосинтеза.

5. Структурная и биохимическая организация аппарата фотосинтеза.

6. Иллюстрации.

7. Список использованной литературы.

Основной источник энергии

Слово «фотосинтез» означает буквально создание или сборку чего-то под действием света. Обычно, говоря о фотосинтезе, имеют в виду процесс, посредством которого растения на солнечном свету синтезируют органические соединения из неорганического сырья. Все формы жизни во Вселенной нуждаются в энергии для роста и поддержания жизни. Водоросли, высшие растения и некоторые типы бактерий улавливают непосредственно энергию солнечного излучения и используют ее для синтеза основных пищевых веществ. Животные не умеют использовать солнечный свет непосредственно в качестве источника энергии, они получают энергию, поедая растения или других животных, питающихся растениями. Итак, в конечном счете источником энергии для всех метаболических процессов на нашей планете, служит Солнце, а процесс фотосинтеза необходим для поддержания всех форм жизни на Земле.

Мы пользуемся ископаемым топливом - углем, природным газом, нефтью и т. д. Все эти виды топлива - не что иное, как продукты разложения наземных и морских растений или животных, и запасенная в них энергия была миллионы лет назад получена из солнечного света. Ветер и дождь тоже обязаны своим возникновением солнечной энергии, а следовательно, энергия ветряных мельниц и гидроэлектростанций в конечном счете также обусловлена солнечным излучением.

Важнейший путь химических реакций при фотосинтезе - это превращение углекислоты и воды в углероды и кислород. Суммарную реакцию можно описать уравнением СО2+Н20 ® [СН20]+02

Углеводы, образующиеся в этой реакции, содержат больше энергии, чем исходные вещества, т. е. СО2 и Н20. Таким образом, за счет энергии Солнца энергетические вещества (СО2 и Н20) превращаются в богатые энергией продукты - углеводы и кислород. Энергетические уровни различных реакций, описанных суммарным уравнением, можно охарактеризовать величинами окислительно-восстановительных потенциалов, измеряемых в вольтах. Значения потенциалов показывают, сколько энергии запасается или растрачивается в каждой реакции. Итак, фотосинтез можно рассматривать как процесс образования лучистой энергии Солнца в химическую энергию растительных тканей.

Содержание СО2 в атмосфере остается почти полным, несмотря на то, что углекислый газ расходуется в процессе фотосинтеза. Дело в том, что все растения и животные дышат. В процессе дыхания в митохондриях кислород, поглощаемый из атмосферы живыми тканями, используется для окисления углеводов и других компонентов тканей с образованием в конечном счете двуокиси углерода и воды и с сопутствующим выделением энергии. Высвобождающаяся энергия запасается в высокоэнергетические соединения - аденозинтрифосфат (АТФ), который и используется организмом для выполнения всех жизненных функций. Таким образом дыхание приводит к расходованию органических веществ и кислорода и увеличивает содержание СО2 на н планете. На процессы дыхания во всех живых организмах и на сжигание всех видов топлива, содержащих углерод, в совокупности расходуется в масштабах Земли в среднем около 10000 тонн 02 в секунду. При такой скорости .потребления весь кислород в атмосфере должен бы иссякнуть примерно, через 3000 лет. К счастью для нас, расход органических веществ и атомного кислорода уравновешивается созданием углеводов и кислорода в результате фотосинтеза. В идеальных условиях скорость фотосинтеза в зеленых тканях растений примерно в 30 раз превышает скорость дыхания в тех же тканях, таким образом, фотосинтез служит важным фактором, регулирующим содержание 02 на Земле.

История открытия фотосинтеза

В начале XVII в. фламандский врач Ван Гельмонт вырастил в кадке с землей дерево, которое он поливал только дождевой водой. Он заметил, что спустя пять лет, дерево выросло до больших размеров, хотя количество земли в кадке практически не уменьшилось. Ван Гельмонт, естественно, сделал вывод, что материал, из которого образовалось дерево произошел из воды, использованной для полива. В 1777 английский ботаник Стивен Хейлс опубликовал книгу, в которой сообщалось, что в качестве питательного вещества, необходимого для роста, растения используют главным образом воздух. В тот же период знаменитый английский химик Джозеф Пристли (он был одним из первооткрывателей кислорода) провел серию опытов по горению и дыханию и пришел к выводу о том, что зелёные растения способны совершать все те дыхательные процессы, которые были обнаружены в тканях животных. Пристли сжигал свечу в замкнутом объеме воздуха, и обнаруживал, что получавшийся при этом воздух уже не может поддерживать горение. Мышь, помещенная в такой сосуд, умирала. Однако веточка мяты продолжала жить в воздухе неделями. В заключение Пристли обнаружил, что в воздухе, восстановленном веточкой мяты, вновь стала гореть свеча, могла дышать мышь. Теперь мы знаем, что свеча, сгорая, потребляла кислород из замкнутого объема воздуха, но затем воздух снова насыщался кислородом благодаря фотосинтезу, происходившему в оставленной веточке мяты. Спустя несколько лет голландский врач Ингенхауз обнаружил, что растения окисляют кислород лишь на солнечном свету и что только их зеленые части обеспечивают выделение кислорода. Жан Сенебье, занимавший пост министра, подтвердил данные Ингенхауза и продолжил исследование, показав, что в качестве питательного вещества растения используют двуокись углерода, растворенную в воде. В начале XIX века другой швейцарский исследователь де Соседи изучал количественные взаимосвязи между поглощенной растением углекислотой, с одной стороны, и синтезированными органическими веществами и кислородом - с другой. В результате своих опытов он пришел к выводу, что вода также потребляется растением при ассимиляции СО2. В 1817 г. два французских химика, Пельтье и Каванту, выделили из листьев зеленое вещество и назвали его хлорофиллом. Следующей важной вехой в истории изучения фотосинтеза было сделанное в 1845 г. немецким физиком Робертом Майером утверждение о том, что зеленые растения преобразуют энергию, солнечного света в химическую энергию. Представления о фотосинтезе, сложившиеся к середине прошлого века, можно выразить следующим соотношением:

Зеленое растение

СО2+ Н2 О + Свет ® О2 + орг. вещества +химическая энергия

Отношение количества С02, поглощенного при фотосинтезе, к количеству выделенного 02, точно измерил французский физиолог растений Бусэнго. В 1864 г. он обнаружил, что фотосинтетическое отношение, т.е. отношение объема выделенного 02 к объему поглощенного С02, почти равно единице. В том же году немецкий ботаник Закс (открывший также у растений дыхание) продемонстрировал образование зерен крахмала при фотосинтезе. Закс помещал зеленые листья на несколько часов в темноту для того, чтобы они израсходовали накопленный в них крахмал. Затем он выносил листья на свет, но при этом освещал лишь половину каждого листа, оставляя другую половину листа в темноте. Спустя некоторое время весь лист целиком обрабатывали парами йода. В результате освещенная часть листа становилась темно-фиолетовой, что свидетельствовало об образовании комплекса крахмала с йодом, тогда как цвет другой половины листа не изменялся. Прямую связь между выделением кислорода и хлоропластами в зеленых листьях, а также соответствие спектра действия фотосинтеза спектру поглощеных хлоропластами установил в 1880 г. Энгельман. Он поместил нитевидную зеленую водоросль имеющую спирально извитые хлоропласты, на предметное стекло, освещая его узким и широким пучком белого света. Вместе с водорослью на предметное стекло наносилась суспензия клеток подвижных бактерий, чувствительных к концентрации кислорода. Предметное стекло помещали в камеру без воздуха и освещали. В этих условиях подвижные бактерии должны были перемещаться в ту часть, где концентрация 02 была выше. После прошествия некоторого времени образец рассматривали под микроскопом и подсчитывали распределение бактериопопуляции. Оказалось, что бактерии концентрировались вокруг зеленых полосок в нитевидной водоросли. В другой серии опытов Энгельман освещал водоросли лучами разного спектрального состава, установив призму между источником света и предметным столиком микроскопа. Наибольшее число бактерий в этом случае скапливалось вокруг тех участков водоросли, которые освещались синим и красным областями спектра. Находящиеся в водорослях хлорофиллы поглощали синий и красный свет. Поскольку к тому времени было уже известно, что для фотосинтеза необходимо поглощение света, Энгельман заключил, что хлорофиллы участвуют в синтезе в качестве пигментов, являющихся активными фоторецепторами. Уровень знаний о фотосинтезе в начале нашего века можно представить следующим образом.


Страница: