Жидкие кристаллы
Рефераты >> Химия >> Жидкие кристаллы

В чем же дело? Почему течение нематика оказыва­ется более сложным, чем течение обычной жидкости?

Дело в том, что течение жидкости вызывает переориентацию длинных осей молекул. А на введенном выше языке описания жидкого кристалла как сплошной среды с помощью задания в каждой его точке направле­ния директора означает, что течение нематика, с одной стороны, может приводить к переориентации директора, а с другой, к тому, что характеристики течения оказыва­ются различными при различной ориентации директора по отношению к направлению скорости течения жидко­сти. Эти результаты легко понять и на молекулярном уровне. При течении жидкости молекул-палочек по ка­пиллярам, особенно узким, течение будет выстраивать палочки-молекулы вдоль оси капилляра. Если каким-ли­бо' образом заставлять оставаться ориентацию палочек неизменной, то легко сообразить, что течение жидкости • случае ориентации палочек поперек капилляра будет затруднено по сравнению с течением при их ориентации вдоль капилляра.

Эти интуитивные представления, которые мы черпаем из повседневного опыта, полностью подтверждаются на эксперименте. Еще в начале 40-х годов В. Н. Цветков исследовал зависимость скорости протекания нематика через капилляры от ориентации директора. При ориента­ции директора поперек капилляра скорость протекания жидкого кристалла через капилляр оказалась существен­но меньше, чем при ориентации директора вдоль оси ка­пилляра. Ориентация директора поперек оси капилляра осуществлялась с помощью прикладываемого перпенди­кулярно капилляру магнитного поля (о том, почему поле ориентирует нематик, речь еще впереди). Результат опы­та, интерпретация которого проводилась с помощью фор­мулы Пуазейля, показал, что при включенном магнитном поле наблюдаемая вязкость почти в 2 раза больше, чем в отсутствии магнитного поля.

Таким образом, опыт показал, что для жидких кри­сталлов надо разрабатывать свою, более сложную и общую, чем для обычных жидкостей, теорию текучести. Такая теория разрабатывается усилиями многих исследо­вателей. И оказалась она гораздо более сложной, чем обычная гидродинамика. Достаточно сказать, что в об­щем случае жидкий кристалл описывается восьмью коэф­фициентами вязкости. И даже упрощенный вариант этой теории, пренебрегающий сжимаемостью жидких кри­сталлов, содержит пять коэффициентов вязкости. Это оп­ределяет как трудности теоретического описания тече­ния жидких кристаллов, так и постановку экспериментов, допускающих однозначную интерпретацию результатов. Здесь надо добавить, что в экспериментальном отноше­нии дополнительные трудности связаны с тем, что в процессе течений в жидком кристалле могут возникать дефекты в ориентации директора. Дефектами называют точки или линии в нематике, на которых ориентация ди­ректора не определена. Поведение течений при наличии таких дефектов особенно сложно, и, в частности, упоми­навшуюся выше зависимость вязкости нематика от скоро­сти течения связывают с возникновением при возрастании скорости именно таких дефектов,

Таким образом, можно констатировать, что течение жидких кристаллов—это весьма сложный процесс, а ис­следования гидродинамики ЖК находятся в начале свое­го пути. Облегчает исследование гидродинамики жидких кристаллов их двулучепреломление, оно позволяет визу-ализировать наведенные течением жидкого кристалла, из­менения ориентации директора и, наоборот, по измене­нию двупреломления, т. е. оптических свойств нематика, судить о скоростях и изменении скоростей в потоке. Электрические свойства. Забегая вперед, скажем, что большинство применений жидких кристаллов связано с управлением их свойствами путем приложения к ним ! электрических воздействий. Податливость и «мягкость» жидких кристаллов по отношению к внешним воздейст­виям делают их исключительно перспективными матери­алами для применения в устройствах микроэлектроники, для которых характерны небольшие электрические на­пряжения, малые потребляемые мощности и малые га­бариты. Поэтому для обеспечения оптимального режима функционирования ЖК элемента в каком-либо устройст­ве важно хорошо изучить электрические характеристики жидких кристаллов. Начнем описание электрических свойств с электро проводности жидких кристаллов. Электропроводность — это величина, характеризующая количественно способ­ность вещества проводить ток. Она является коэффици­ентом пропорциональности в формуле l==oU, устанав­ливающей связь между током / и приложенным напря­жением U. Поскольку проводимость о — характеристика вещества, то ее значение всегда приводится для единич­ного объема вещества с единичным сечением поверхно­стей. Такой «объемчик» можно представить себе в виде кубика или цилиндра. Напряжение прикладывается к про­тивоположным граням куба или сечениям цилиндра, а ток в приведенной формуле—это суммарный ток через грани куба, к которым приложено напряжение, или че­рез сечение цилиндра. Вспомнив курс школьной физики, читатель скажет, что проводимость — это величина, об­ратная удельному сопротивлению (строго говоря, введен­ную нами величину следует также называть удельной проводимостью, но слово «удельная» обычно опускают). Совершенно правильно] Более того, проводимость изме­ряется в тех же, что и сопротивление, единицах — в омах, точнее, обратных омах. Для объема ЖК в один кубиче­ский сантиметр ее типичное значение ^0~"—\0~" Ом-*-см. Это довольно-таки малая величина, характерная для ор­ганических жидкостей. Для металлов соответствующая величина на 16—18 порядков больше) Но здесь важно не абсолютное значение проводимости, а то, что прово­димость в направлении вдоль директора (Гц отличается от проводимости поперек директора Од. . В большинстве нематиков сгц больше, чем Oi. Так, для нематика МББА

вЦ/»1==1,5-

Другим важным обстоятельством является то, что проводимость в жидких кристаллах носит ионный харак­тер. Это означает, что ответственными за перенос элек­трического тока в ЖК являются не электроны, как в ме­таллах, а гораздо более массивные частицы. Это поло­жительно и отрицательно заряженные фрагменты моле­кул (или сами молекулы), отдавшие или захватившие из­быточный электрон. По этой причине электропроводность жидких кристаллов сильно зависит от количества и хими­ческой природы содержащихся в них примесей. В част­ности, электропроводность нематика можно целена­правленно изменять, добавляя в него контролируемо» количество ионных добавок, в качестве которых могут выступать некоторые соли.

Из сказанного понятно, что ток в жидком кристалле представляет собой направленное движение ионов в системе ориентированных палочек-молекул. Если ионы представить себе в виде шариков, то свойство нематика обладать проводимостью вдоль директора в р. больше, чему, представляется совершенно естественным и по­нятным. Действительно, при движении шариков вдоль директора они испытывают меньше помех от молекул-палочек, чем при движении поперек молекул-палочек. В результате чего и следует ожидать, что продольная проводимость о II будет превосходить поперечную про­водимость.

Более того, обсуждаемая модель шариков-ионов в системе ориентированных палочек-молекул с необходи­мостью приводит к следующему важному заключению. Двигаясь под действием электрического тока поперек направления директора (мы считаем, что поле приложе­но поперек директора), ионы, сталкиваясь с молекула­ми-палочками, будут стремиться развернуть их вдоль направления движения ионов, т. е. вдоль направления электрического тока. Мы приходим к заключению, что электрический ток в жидком кристалле должен приво­дить к переориентации директора.


Страница: