Высокомолекулярные соединения
Рефераты >> Химия >> Высокомолекулярные соединения

Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой моле­кулярной цепи настолько удалены друг от друга, что взаимное влия­ние становится ничтожно малым. Вследствие этого некоторые участ­ки молекулярной цепи при растворении (когда подвижность и гиб­кость цепи возрастает) и в процессах деформации полимеров ведут себя как кинетически самостоятельные единицы. Такие участки моле­кулярной цепи называют сегментами. Величина участка моле­кулярной цепи, проявляющего кинетическую независимость (сегмен­та), не является постоянной и зависит от условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения на­грузки при деформации). Это приводит к появлению некоторых осо­бенностей в свойствах растворов и в процессах деформации поли­меров.

Простейшей «частицей», самостоятельно участвующей в химиче­ских реакциях, является элементарное звено макромолекулы поли­мера. Следовательно, реакции функциональных групп полимеров — это химические реакции элементарных звеньев.

Следует отметить, что под функциональными группами полиме­ра обычно подразумевают функциональные группы, входящие в со­став элементарных звеньев цепи. В макромолекулах большинства полимеров имеются также концевые функциональные группы, как правило отличающиеся от функциональных групп элементар­ных звеньев. Однако при большом молекулярном весе полимера и малом числе концевых групп реакциями концевых групп в подавляю­щем большинстве химических превращений полимеров можно пре­небречь.

В классической химии полноту протекания химической реакции обычно характеризуют числом молей превращенного вещества или выходом продуктов реакции, причем под «молем» понимают вполне определенную величину — молекулярный вес вещества, выраженный в конкретных весовых единицах.

Иначе обстоит дело в химии высокомолекулярных соединений. Так, при этерификации поливинилового спирта один моль уксусного ангидрида расходуется на одно элементарное звено полимера, и понятие «моль» становится условным. В химии высокомолекулярных соединений молем* называют молекуляр­ный вес элементарного звена полимера, выраженный в конкретных весовых единицах.

Соответственно полноту химической реакции характеризуют числом прореагировавших элементарных звеньев. Поскольку эти звенья находятся в одной молекулярной цепи, число элементарных звеньев, участвующих в реакции, показывает не выход конечного продукта реакции, как в реакциях низкомолекулярных соединений, а степень химического превращения высокомолекуляр­ного соединения. К тому же исходные и конечные продукты реак­ции объединены в одной молекулярной цепи, что меняет представле­ния «классической» химии о чистом веществе. Поэтому результаты химических превращений высокомолекулярных соединений прихо­дится оценивать статистически.

В тех случаях, когда в результате реакции достигнута исчерпы­вающая полнота превращения всех функциональных групп, полученный продукт, согласно понятиям классической химии, все равно не является чистым веществом вследствие неоднородности полимера по молекулярному весу. Таким образом, вводятся новые понятия: однородность вещества по молекулярному весу и однородность вещества по химическому составу.

Наряду с реакциями элементарных звеньев очень важное значе­ние имеют макромолекулярные реакции полимеров. В этих реакциях макромолекула ведет себя как единое целое и поэтому стехиометрические соотношения реагирующих веществ резко отли­чаются от стехиометрических соотношении веществ в реакциях эле­ментарных звеньев полимеров.

К макромолекулярным реакциям полимеров относятся межмо­лекулярные реакции, в результате которых между макромолекулами образуются химические связи и линейные полимеры превращаются в пространственные, а также реакции химической деструкции поли­меров, протекающие под влиянием химических реагентов.

В реакциях элементарных звеньев полимера, вследствие соизме­римости молекулярных весов элементарного звена и реагирующего с ним низкомолекулярного вещества, участвуют обычно соизмеримые количества полимера и низкомолекулярного соединения. При обра­зовании же межмолекулярных связей в реакции участвует, с одной стороны, макромолекула полимера, а с другой — молекула низко* молекулярного соединения, молекулярный вес которого в сотни или тысячи раз меньше молекулярного веса полимера. Например, для обра­зования химической связи между двумя макромолекулами полиакриловой кислоты достаточно одного атома двухвалентного металла:

При этом макромолекулы полиакриловой кислоты теряют свою кинетическую самостоятельность, полимер приобретает пространст­венное строение, в результате чего резко изменяются физические свойства системы.

Весовая доля низкомолекулярного вещества, участвующего в макромолекулярной реакции, ничтожно мала, так как она опреде­ляется соотношением молекулярных весов низкомолекулярного со­единения и полимера. Этим обусловлена одна из важных особенно­стей высокомолекулярных соединений — резкое изменение свойств под влиянием малых добавок некоторых веществ.

При реакциях химической деструкции полимеров на разрыв од­ной связи в полимере расходуется одна молекула низкомолекуляр­ного вещества. Например, при гидролизе полиамидов для омыления одной амидной связи требуется одна молекула воды:

Геометрическая форма макромолекул.

Третья особенность химии высокомолекулярных соедине­ний — это резкая зависимость свойств полимеров от геометрической формы макромолекул. В химии низкомолекулярных соединений от геометрии молекулы зависят лишь свойства отдельных ее атомов. Физико-химические свойства низкомолекулярных соединений, как правило, не рассматриваются в связи с формой молекулы.

В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линей­ного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому со­ставу и стереометрии) может по своей форме приближаться к жест­кой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок (глобуляр­ные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для •линейных полимеров, которые отличают их от полимеров с иной гео­метрической формой молекул.

Все линейные полимеры принципиально могут быть переведены в раствор. Растворы линейных полимеров даже при относительно небольших концентрациях обладают высокой вязкостью, в десятки и сотни раз превышающей вязкость соответствующих растворов низко­молекулярных соединений. Многие линейные полимеры могут пла­виться без разложения, причем их расплавы также обладают очень высокой вязкостью. Линейные полимеры, отличаются хорошими физи­ко-механическими свойствами: большой прочностью и эластич­ностью. Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних усилий обусловливает высо­кие эластические свойства. Значительная разрывная прочность ли­нейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации отно­сительно друг друга и иметь большую плотность упаковки, что приводит к возникновению многочисленных межмолекулярных связей свысокой суммарной энергией.


Страница: