Взгляды на происхождение вселенной
Итак, еще одна экстравагантная гипотеза. Но сколь бы ни выглядела правдоподобной и привлекательной изложенная выше в общих чертах, следует относиться к ней трезво, отдавая полный отчет, что перед нами всего лишь очередное (старое, как мир!) овеществление математических отношений (то есть систематизированных в виде формул абстрактных понятий), наподобие уже рассмотренной выше субстанциализированной кривизны.
Несмотря на все вышеописанные теории, ученые понимали, что ответ на вопрос «откуда, собственно, появилась Вселенная» они так и не получили. В надежде уклониться от ответа на этот вопрос, некоторые ученые предложили теорию так называемой "бесконечно пульсирующей Вселенной". В соответствии с этой теорией, Вселенная расширяется, а затем сжимается до сингулярности, затем вновь расширяется и снова сжимается. У нее нет ни начала, ни конца. Это снимает вопрос о происхождении Вселенной - она ниоткуда не возникает, а существует вечно.
Но и эта модель не лишена серьезных недостатков. Прежде всего, до сих пор никто не смог удовлетворительно объяснить механизм пульсирования. Далее, в своей работе "Первые три минуты" С. Вайнберг утверждает, что каждый цикл расширения и сжатия должен приводить к определенным прогрессирующим изменениям во Вселенной, а это значит, что у Вселенной должно быть начало, иначе вся история Вселенной будет регрессом, растянувшимся на вечностью. Таким образом, перед нами вновь встает вопрос о происхождении Вселенной.
Другой попыткой уйти от вопроса о происхождении Вселенной была предложенная английским астрофизиком П. Дэвисом модель "пульсирующей Вселенной с обращением хода времени". Согласно этой теории, Вселенная сначала расширяется, а затем сжимается до сингулярности, причем в начале каждого следующего цикла расширения-сжатия время поворачивает вспять, приводя, в конце концов, к сингулярности, с которой начинался предыдущий цикл. Согласно этой модели, прошлое становится будущим, а будущее - прошлым, так что понятие "начало Вселенной" лишается смысла. Этот сценарий дает некоторое представление о том, на какие ухищрения вынуждены пускаться ученые-космологи, чтобы как-то объяснить происхождение Вселенной.
Перейдем теперь к еще одной, не менее интересной теории возникновения мира. Это Антропный принцип. В чем его сущность?
Антропный (человеческий) принцип первым сформулировал в 1960 году Иглис Г.И. , но он является как бы неофициальным его автором. А официальным автором был ученый по фамилии Картер.
Антропный принцип говорит о том, что в начале вселенной был план мироздания, венцом этого плана является возникновение жизни, а венцом жизни - человек. Антропный принцип очень хорошо укладывается в религиозную концепцию программирования жизни.
Антропный принцип утверждает, что вселенная такая, какая она есть потому, что есть наблюдатель или же он должен появиться на определенном этапе развития. В доказательство вышеизложенного создатели этой теории приводят очень интересные факты. Это Критичность Фундаментальных Констант и Совпадение Больших Чисел.
Рассмотрим первый факт. Фундаментальными константами называются:
скорость света - С
постоянная планка - h
заряд электрона - е
масса электрона - mе
масса протона - mр
масса нейтрона - mn
средняя плотность во вселенной
гравитационная постоянная
электромагнитная постоянна
Исходя из этих констант обнаружили их взаимосвязь:
между массой протона, электрона и нейтрона:
mр - mn > me
me = 5,5x10 г/моль
mp - mn=13,4x10 г/моль,
а также критичность значений плотности во вселенной:
q = 10 г/см
если q>10 , то вселенная пульсирующая;
если q<10 , то во вселенной будет отсутствовать тяготение.
Теперь рассмотрим Совпадение Больших Чисел (фундаментальных констант).
r вселенной / r e =10
τ /re =10
qe /q вселенной =10
τ- возраст образования вселенной
Возраст образования вселенной был запрограммирован в момент Большого Взрыва и определяется как 15-20 млрд. лет.
Как мы видим из всего выше изложенного, сам факт связи фундаментальных констант неоспорим. Они полностью взаимосвязаны и их малейшее изменение приведет к полному хаосу. То, что такое явное совпадение и даже можно сказать закономерность существует, дает этой безусловно интересной теории шансы на жизнь. Хотя наука и не признает ее, но в связи с той неопределенностью и противоречием, которое существует в самой науке, я бы не стал списывать со счетов эту теорию, а принял бы ее как один из вариантов.
Выводы
Как видно из написанной работы взглядов на происхождение вселенной очень много. При этом одни теории подтверждены больше, другие – меньше. Хотя, как мы увидели, все эти «подтверждения» очень относительные. И все вышеописанные теории тоже очень шатки и относительны. Теория Большого взрыва, которой как бы верят больше всего, мы увидели, что она тоже вероятностного характера, однозначного ответа на данный вопрос нет, есть более и менее обоснованные предположения.
Приложение 1
Подробные сведения о Большом взрыве и точке сингулярности
По современным представлениям, состояние расширяющейся Вселенной в прошлом (около 13 млрд. лет назад), когда ее средняя плотность в огромное число раз превышала нынешнюю. Периодом Большого взрыва условно называют интервал времени от 0 до нескольких сот секунд. В самом начале этого периода вещество во Вселенной приобрело колоссальные относительные скорости (отсюда название). Наблюдаемыми свидетельствами периода Большого взрыва в настоящее время являются реликтовое излучение, значения концентраций водорода, гелия и некоторых других легких элементов, распределение неоднородностей во Вселенной (например, галактик)
Сценарий Большого взрыва
Как и любая схема, претендующая на объяснение данных о спектре микроволнового космического излучения, химического состава догалактического вещества и иерархии масштабов космических структур, стандартная модель эволюции Вселенной базируется на ряде исходных предположений (о свойствах материи, пространства и времени), играющих, роль своеобразных "начальных условий расширения мира. В качестве одной из рабочих гипотез этой модели выступает предположение об однородности и изотропии свойств Вселенной на протяжении всех этапов ее эволюции.
Кроме того, основываясь на данных о спектре микроволнового излучения, естественно предположить, что во Вселенной в прошлом существовало состояние термодинамического равновесия между плазмой и излучением, температура которого была высока. Наконец, экстраполируя в прошлое законы возрастания плотностей вещества и энергии излучения, нам придется предположить, что уже при температуре плазмы, близкой к 1010 К, в ней, существовали протоны и нейтроны, которые были ответственны за формирование химического состава космического вещества. Очевидно, что подобный комплекс начальных условий нельзя формально экстраполировать на самые ранние этапы расширения Вселенной, когда температура плазмы превышает 1012 К поскольку в этих условиях произошли бы качественные изменения состава материи, связанные, в частности, с кварковой структуры нуклонов. Этот период, предшествующий этапу с температурой около 1012 К, естественно отнести к сверх ранним стадиям расширения Вселенной, о которых, к сожалению, в настоящее время известно еще очень мало. Дело в том, что по мере углубления в прошлое Вселенной мы неизбежно сталкиваемся с необходимостью описывать процессы взаимопревращений элементарных частиц со все большей и большей энергией, в десятки и даже тысячи раз превышающей порог энергий, доступных исследованию на самых мощный современных ускорителях. В подобной ситуации, очевидно, возникает целый комплекс проблем, связанных, во-первых, с нашим незнанием новых типов частиц, рождающихся в условиях высоких плотностей плазмы, а во-вторых, с отсутствием "надежной" теории, позволившей бы предсказать основные характеристики космологического субстрата в этот период. Однако даже не зная в деталях конкретных свойств сверхплотной плазмы при высоких температурах, можно предположить, что, начиная с температуры чуть меньше, 1012 К ее характеристики удовлетворяли условиям, Перечисленным в начале этого раздела. Иначе говоря, при температуре около 1012 К материя во Вселенной была представлена электрон-позитронными парами (е-, е+); мюонами и антимюонами (м-, м+); нейтрино и антинейтрино, как электронными (vе, vе), так и мюонными (vм, vм) и тау-нейтрино (vt, vt); нуклонами (протонами и нейтронами) и электромагнитным излучением. Взаимодействие всех этих частиц обеспечивало в плазме состояние термодинамического равновесия, которое, однако, изменилось по мере расширения Вселенной для различных типов частиц. При температурах меньше 1012 К первыми это "почувствовали" мюон-антимюонные пары, энергия покоя которых составляет примерно 106 МэВ8. Затем уже при температуре порядка 5x109 К аннигиляция электрон-позитронных пар стала преобладать над процессами их рождения при взаимодействии фотонов, что в конечном итоге привело к качественному изменению состава плазмы. Начиная с температур Т<109 К, основную роль в динамике расширения Вселенной стали играть электронные, мюонные и тау-нейтрино, а также электромагнитное излучение. Как же перераспределилась энергия, которая была "запасена" на лептонной стадии в массивных частицах? Оказывается, она пошла на "нагрев" излучения, а вместе с тем и частиц, находящихся при температурах больше 5x109 К в равновесии с излучением. Действительно, небольшое увеличение плотности фотонов, вызванное аннигиляцией мюонов и антимюонов, автоматически приводит к увеличению концентрации электрон-позитронных пар, которые взаимодействуют с фотонами в реакции Y+Y -> е- + е+. В свою очередь, электроны и позитроны могут рождать пары нейтрино и антинейтрино. Таким образом, весь избыток энергии мюонов после их аннигиляции перераспределится между различными компонентами плазмы. Подобная "перекачка" энергии массивных частиц ко все более легким должна была осуществляться лишь до тех пор, пока не стали аннигилировать самые легкие заряженные лептоны - электроны и позитроны, которые в последний раз "подогрели" излучение при температуре около 5x109 К. После этот момента доминирующую роль в расширении Вселенной играло электромагнитное излучение, и лептонная эра "температурной" истории космической плазмы сменилась эрой преобладания радиации. Фактически именно в этот период при температурах плазмы около 5x109 К произошло формирование равновесного спектра электромагнитного излучения, дошедшего до нас в форме микроволнового реликтового фона. Именно в ходе аннигиляции электрон-позитронных пар практически вся энергия, запасенная в этом компоненте, была передана электромагнитному излучению, плотность энергии которого увеличилась. Оставшиеся от эпохи аннигиляции электроны, сталкиваясь с квантами излучения, участвовали в обмене энергией между подсистемами плазмы. Кроме того, столкновения электронов с протонами сопровождались высвечиванием квантов, в результате чего спектр электромагнитного излучения должен был стать характерным для равновесного распределения.